Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы определение титрованием раствором цианида калия

    Наиболее распространенные титриметрические методы определения серебра основаны на реакциях осаждения, комплексообра-зования и реакциях окисления-восстановления. В методах титрования по реакциям осаждения в качестве титрантов используют растворы галогенидов, роданидов или цианидов щелочных металлов. Титрование можно вести как без индикатора (метод Гей-Люссака) [16671, так и в присутствии индикаторов — хромата калия (метод Мора) или железоаммонийных квасцов (метод Фоль-гарда). Последний метод получил наибольшее распространение. [c.77]


    Чжен Гуан-лу [304] разработал быстрый и точный прямой метод определения небольших количеств индия титрованием раствором динатриевой соли этилендиаминтетрауксусной кислоты при pH 2,3—2,5 или при pH 7—8 в присутствия 1-(2-пиридил-азо)-2-нафтола. Пря pH 2,3—2,5 не мешают щелочные и щелочно-гемельные металлы, алюминий и марганец. При pH 7—8 не мешают медь, цинк, кадмяй, никель, серебро, ртуть и некоторые другие элементы, если к титруемому раствору добавить достаточное количество цианида калия. Трехвалентное железо связывают фторидом калия в присутствии тартрата и небольших количеств цианида. Не мешают хлориды, сульфаты, нитраты, перхлораты, фториды, тартраты и цитраты. Мешают свинец, висмут, галлий и олово. [c.107]

    Ход определения. Навеску 5—20 г пробы растворяют в соляной и азотной кислотах, прибавляют 5—10 мл концентрированной серной кислоты и выпаривают до выделения белых паров. Остаток в течение получаса обрабатывают 250 мл воды, подкисленной серной кислотой, и затем фильтруют. Фильтра восстанавливают насыщенным раствором тиосульфата, добавлением карбоната натрия и уротропина доводят pH раствора до 6—7 и кипятят. Осаждаются гидроокиси меди, висмута, алюминия, галлия, индия и т. п. Выделившийся осадок быстро отсасывают, промывают горячей водой и растворяют в небольшом количестве соляной кислоты. К раствору прибавляют окислитель, добавляют в достаточном количестве тартрат натрия и нейтрализуют едким натром по фенолфталеину. Прибавив несколько кристаллов солянокислого гидроксиламипа и цианида калия, осаждают индий добавлением 5 мл 2%-ного раствора, купраля, после чего экстрагируют хлороформом. Хлороформный раствор выпаривают досуха, остаток разлагают соляной кислотой и несколькими каплями перекиси водорода. В полученном растворе, после доведения его pH до значения около 4, определяют индий комплексометрическим титрованием. Автор считает наиболее целесообразным, осаждать индий вместе с гидроокисями остальных металлов и после растворения осадка отделять индий с помощью ионита по методу Йенча [82]. [c.495]

    Нечеткий переход окраски индикатора наблюдается в присутствии металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном III. Определению жесткости не мешают железо (не более 10 мг л), кобальт (не более 0,1 мг л), никель (не более 0,1 мг л), медь (не более 0,1 мг л) и другие элементы. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызьшающих повышенный расход раствора, можно применить цианид калия, солянокислый гидроксиламин или сульфид натрия. [c.72]


    Совершенно специфическим является осаждение таллия из цианидного и тартратного растворов (pH 7—9). Серебро можно также определить висмутиолом и отделить от ряда металлов, если применить в качестве маскирующих реактивов комплексон, тиосульфат и цианид калия [56, 58]. Некоторые весовые определения можно заменить косвенным комплексометрическим определением. Так, например, висмут [59] после осаждения висмутиолом из 0,3 и. раствора азотной кислоты (или 0,5 н. раствора НС1 или 1 н. раствора Н2804) отфильтровывают, осадок промывают и затем растворяют в 0,02 М растворе комплексона, избыток которого определяют обратным титрованием раствором соли магния. Аналогичным образом можно определять свинец [60]. [c.541]

    Были изучены интервалы концентраций никеля, максимальный избыток аммиака и влияние температуры на воспроизводимость результатов титрования [856]. Особенно много внимания было уделено определению никеля в присутствии других элементов, образующих с K N осадки, комплексные соединения или малорастворимые гидроокиси. Методом Либиха никель легко отделяется от кобальта [660, 900]. При добавлении цианида калия к смеси солей кобальта и никеля оба элемента переходят в комплексы [Ni( N)4] и [Со ( N)e] ". Если на такой раствор подействовать бромной водой, то кобальт перейдет в соединение Со ( N)e] ", а никель выпадает в виде М1(0Н)з осадок отделяют от раствора, растворяют в щавелевой кислоте, подщелачивают раствор аммиаком и вновь титруют раствором K N. Эванс [635] предложил одновременно определять никель и кoбaльт этим методом из одной пробы. В начале по Мору титруют сумму металлов, затем добавляют избыток K N, кобальт переходит в очень прочный комплекс [Со (СМ)б] ". Затем избыток N -ионов удаляют кипячением с перекисью водорода и оттитровывают никель. Ионы Fe " , АР , Сг + маскируют винной кислотой. Этот метод широко применяется при анализе сталей (главным образом высоколегированных). [c.91]

    Определение различных металлов титрованием раствором цианида калия. Аргентометрическое титрование цианидов можно применить для определения тех металлов, которые с цианидами образуют комплексные ионы, в частности для определения никеля, кобальта, меди и цинка. Приводим некоторые из методов, предложенных для определения никеля и кобальта. [c.350]

    В литературе опубликованы амперометрические методы определения некоторых гетероэлементов в растворах после разлон ения органических соединений. Так, фосфор в виде фосфата титруют, используя реакции осаждения этого аниона солями различных металлов — свинца [22], урана [23], железа [24]. Для индикации точки эквивалентности служит диффузионный ток избытка осади-теля. Аналогичным же методом находят содержание и мышьяка (осаждением арсената железа) [24]. Описан также способ последовательного титрования трех галогенов нитратом серебра в одном растворе плава после восстановительного разложения органического веш ества с металлическим калием [25]. Тот же прием применен и к определению азота в виде цианида [26]. [c.160]

    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Здесь следовало бы упомянуть еще о возможности осаждения катионов непосредственно в титруемом растворе. Эти возможности относительно небольшие. Образующиеся осадки не должны быть сильно окрашенными, не должны иметь большого объема и главное не должны растворяться в комплексоне. Для этой цели пока используется — наряду с фторидом аммония — только диэтилдитиокарбамат натрия (купраль) и только лишь при определении цинка и кадмия или цинка и свинца [27]. В слабоаммиачном растворе в присутствии комплексона купраль осаждает только металлы IV аналитической группы (см. стр. 199), что как раз и позволяет проводить вышеупомянутые определения. При определении цинка и кадмия поступают следующим образом. В растворе определяют сначала суммарное содержание цинка и кадмия титрованием раствором комплексона с эриохромом черным Т. Затем прибавляют твердый купраль или его свежеприготовленный раствор. Выделяется белый осадок тиокарбамата кадмия, и освободившееся эквивалентное ему количество комплексона определяют обратным титрованием раствором сульфата магния. Образовавшийся белый осадок или муть не оказывают влияния на переход окраски индикатора. Следует лишь следить за тем, чтобы анализируемый раствор не был слишком щелочным, так как последующее осаждение кадмия купралем не сможет быть тогда количественным. В том же растворе можно проводить и контрольное определение цинка прибавлением в раствор твердого цианида калия до растворения осадка тиокарбамата кадмия. Цинк при этом связывается в цианид цинка, и выделяется комплексон, который и оттитровывают. Аналогичным способом можно проводить определение пар катионов Нд — Zn, РЬ — Zn и т. д. Другие примеры приведены в разделе о комбинированном маскировании катионов (стр. 432). [c.430]


    Другие методы определения висмута—весовые, электролитические и объемные—менее удовлетворительны. Среди весовых методов имеются такие, в которых висмут определяется в виде сульфида Bi Sg и в виде металла после восстановления окиси висмута или сульфида висмута сплавлением с цианидом калия. Но ни один из этих методов не может считаться точным. То же самое можно сказать и об электролизе в разбавленном сернокислом или азотнокислом растворе и об объемном методе определения висмута осаждением его в виде основного оксалата с последующим титрованием перманганатом.  [c.254]

    Хинализарин (1,2,5,8-тетраоксиантрахинон) образует со щелочным раствором бериллия синюю окраску в отсутствие бериллия краситель в щелочном растворе имеет фиолетовый цвет. Таким путем бериллий можно определить по методу смешанной окраски для зтого, смешав щелочной раствор соли бериллия с достаточным избытком реактива для образования сине-фиоле-товой окраски, сравнивают оттенок последней с серией стандартных растворов или применяют колориметрическое титрование. Алюминий в сравнительно больших количествах не мешает определению бериллия, так же как и металлы, образующие гидроокиси, растворимые в избытке едкого натра. Исключение составляет цинк, который в относительно больших количествах также дает синюю окраску. Металлы, образующие гидроокиси, нерастворимые в едкой щелочи, должны отсутствовать, особенно железо и магний. Медь, цинк и никель можно замаскировать цианидом калия. Фосфаты не мешают. Концентрация едкого натра влияет на оттенок окраски. Вещества, которые подобно аммонийным солям изменяют pH раствора, не должны нрисутствовать в заметных количествах. Удобно пользоваться растворами 0,25 н. по едкому натру, но в присутствии алюминия концентрацию едкой щелочи можно увеличивать до 0,5 н., чтобы удержать этот элемент в растворе. [c.156]

    Хотя и было предложено несколько способов комплексометрического определения алюминия, практически ими до сих пор не пользовались. Определение алюминия в щелочном растворе (обратное титрование комплексоном) требует тщательного выполнения условий работы. Присутствие некоторых других элементов (Мп, Са, Mg), для которых до сих пор не имеется хороших селективных маскирующих реактивов, мешает определению. Даже цианид калия, пригодный для маскирования многих тяжелых металлов, здесь не всегда может быть использован. Более надежным является комплексометрическое определение алюминия в кислом растворе, в котором большинство определений приходится проводить косвенным путем. Некоторые из применяемых способов, например обратное титрование нитратом тория, являются дорогостоящими для массовых определений, другие — не дают удовлетворительных результатов вследствие неотчетливого перехода окраски индикатора. Весьма точно можно определять алюминий обратным титрованием избытка комплексона хлоридом трехвалентного железа потенциометрическим методом, согласно Пршибилу и сотрудникам (стр. 387). Этот потенциометрический метод был всесторонне исследован Милнером и В /дхедсм [71] и заменен ими визуальным титрованием (с салициловой кислотой в качестве индикатора). Преимущество определения алюминия в кислом растворе основано главным образом на том, что определению не мешают приблизительно равные концентрации катионов щелочноземельных металлов. Поэтому все применяемые в практике анализа методы основаны на определении алюминия в кислом растворе после выделения его способом, зависящим от характера анализируемого материала. Ниже приводится несколько таких м етодов, разработанных различными авторами и значительно отличающихся один от другого. [c.487]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    Разумеется, при pa 4eie жесткости исследуемой воды следует принимать во внимание объем жидкости, взятой для титрования, если он отличается от 100 мл. При титровании очень жесткой воды можно пользоваться более концентрированным раствором комплексона. Очень подробно было изучено определение жесткости вод, имеющих различный качественный состав. Следы тяжелых металлов титруются одновременно с кальцием и магнием, иногда же они блокируют индикатор (Си). Поэтому лучше всего их маскировать цианидом калия или осадить добавлением нескольких капель раствора сульфида натрия или купраля.Стронций и барий, если они присутствуют в анализируемой воде, вызывают неясный переход окраски индикатора. Незначительные количества железа и алюминия также мешают определению жесткости воды. Железо можно осадить сульфидом натрия. Количество выделившихся сульфидов тяжелых металлов всегда незначительно, поэтому они не мешают переходу окраски индикатора. Для маскирования всех катионов, обычно присутствующих в воде, весьма целесо- [c.438]

    Титрование в щелочном растворе удобно тем, что для маскирования целого ряда ионов металлов, которые часто сопутствуют индию (в первую очередь цинк и кадмий), можно применить цианид калия. Все же Са и Mg титруются совместно с индием. Из-за этого предпочйтают проводить определение в кислой среде. [c.275]

    Непрямой комплексонометрический метод определения молибдата основан на его осаждении хлоридом кальция и титровании ионов кальция раствором комплексона IH после переведения отфильтрованного осадка СаМо04 в растворимое состояние [990, 1372, 1373]. Более надежные результаты дает следующий метод [990]. К раствору о осадком СаМо04 при pH 10 при- бавляют некоторое количество цианида калия для маскировки следов тяжелых металлов, избыток ионов кальция связывают добавлением комплексона И1, причем в качестве индикатора служит эриохромчерный Т вместе с комплексонатом магния. Осадок aMoOi растворяют затем добавлением измеренного избытка титрованного раствора комплексона III при нагревании и избыток комплексона III оттитровывают стандартизированным раствором соли магния. Израсходованное количество комплексона III соответствует количеству кальция и, следовательно, молибдена. Относительная погрешность составляет около 1% при определении 50—200 мг Мо. [c.171]


Смотреть страницы где упоминается термин Металлы определение титрованием раствором цианида калия: [c.171]    [c.324]    [c.163]   
Объёмный анализ Том 2 (1952) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Калий цианид

Металлы растворов

Растворы цианидов

Титрование растворы

Цианид-ион определение в растворе

Цианиды

калия, раствор



© 2025 chem21.info Реклама на сайте