Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний комплекс с с никеля и цинка

    Фосфорная кислота образует довольно прочные комплексы с железом и алюминием и, следовательно, может применяться в качестве комплексообразующего элюента при отделении этих металлов от двузарядных ионов, в частности, от марганца и меди [29]. Высокой устойчивостью отличаются анионные комплексы с пирофосфатом и полиметафосфатом (ср. рис. 5,4) с их помощью некоторые элементы, например, медь, цинк и марганец, могут быть отделены от железа методом селективного поглощения. Железо, образующее прочные анионные комплексы, не поглощается катионитом, который лучше всего использовать в КН4-форме [34 80, 108, 109 ]. В качестве комплексообразователя для меди иногда используется несколько необычный элюент — раствор тиосульфата. А. М. Васильев, В. Ф. Торо-пова и А, А. Бусыгина [134 ] применяли раствор тиосульфата для отделения меди от цинка или кадмия, а Д. И. Рябчиков и В. П. Осипова [109 ] — для отделения меди от алюминия и магния. Коэффициенты распределения [59 ] определяют следующий порядок элюирования медь, кадмий, свинец, цинк. Такие элементы, как никель, кобальт, марганец, алюминий, железо, кальций и барий, весьма прочно удерживаются катионитом. [c.364]


    В условиях определения цинка флуоресцируют лишь кадмий и индий [49], но многие элементы, в том числе такие постоянные компоненты минерального сырья, как железо, титан и магний, в значительной степени тушат свечение цинкового комплекса. Поэтому для определения цинка в рудах и минералах необходимо предварительно отделять его от большинства посторонних элементов. С этой целью применяют экстракцию рода-нидного комплекса цинка изо-амиловым спиртом из фторидно-сернокислой среды. При этом вместе с цинком извлекаются медь и частично кадмий, кобальт и никель эти четыре элемента отделяют путем промывки экстракта подкисленным раствором роданида, после чего цинк реэкстрагируют аммиачным раствором хлорида аммония [1]. Однако следует учитывать, что при таком способе выделения малых количеств цинка во всех стадиях процесса возможна его общая потеря в размере до 25% от исходного содержания [8]. [c.246]

    Для выделения следовых количеств магния из солей металлов, образующих растворимые цианидные комплексы (никель, цинк, марганец и др.), [c.223]

    Поступают так же, как описано в предыдущих параграфах. После прибавления буферного раствора и цианида калия определяют магний комплексометрическим титрованием в присутствии эриохрома черного Т в качестве металлиндикатора. Затем прибавляют формальдегид, который выделяет из цианидного комплекса весь цинк, и определяют последний комплексометрическим титрованием. Медь, ртуть, никель, кобальт и мышьяк определению не мешают. Не мешают также следы железа. Сурьму связывают винной кислотой. [c.418]

    Усиление комплексообразующих свойств соединений за счет включения в орто-положение к хелатообразующему центру карбоксильной группы расширило область существования устойчивых комплексов в сторону высоких значений pH и обеспечило высокую маскирующую способность комплексонов 2 3 19—23 21 Выпадение гидроксидов ряда металлов в присутствии этих комплексонов наблюдается лишь прн высоких значениях pH [73] Например, гидроксиды кобальта(П) и меди(П) в присутствии комплексонов 2.3.19— 23 21 выпадают при рН>11. гидроксид магния — при рН>14 Отмечена селективность маскирования некоторых катионов, так. в присутствии комплексонов 2 3 19 и 2 3 20 медь и кобальт маскируются в отличие от никеля, выпадающего при pH=6—8 в виде малорастворимого комплексоната, кадмий и цинк маскируются при рН=6 в отличие от свинца, также выпадающего в этих условиях в виде малорастворимого комплексоната [73] [c.248]


    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Хромотроповая кислота - образует с титаном ряд окрашенных комплексов. Для спектрофотометрии используется красный комплекс = 470 вм), имеющий постоянную оптическую плотность в в интервале pH 2-3,3 и = 1,2.10 . В этих условиях с реактивом ве взаимодействуют следующие ионы алюминий, барий, берилл й> висмут, кальций, кадмий, кобальт, хром (Ш), медь (1,П), железо (П), галлий, ртуть (1,П), индий, магний, марганец (П), никель, свинец платина (1У), сурьма (Ш), селен (У1), олово <П,1У), теллур,торий, таллий (Ш), цинк, цирконий, серебро образуют окраску железо (Ш), хром (У1). ванадий (У), молибден (У1), вольфрам (У1). Мешающее действие первых четырех элементов устраняется их восстановлением аскорбиновой кислотой. Реактив применим для анализа разнообразных объектов. [c.22]

    Эффективно происходит окрашивание в результате введения в полимер ионов металлов, способных к образованию комплексов с азокрасителями [85—97]. Такими металлами служат никель, хром, кобальт, магний, марганец, железо, ванадий, медь, алюминий, цинк, стронций. В полиолефины вводят солп этих металлов (гало-гениды, сульфаты, оксалаты, фосфаты, бензоаты, салицилаты, цианиды, ацетаты, стеараты, тиоцианаты, цитраты и др.) в Количестве от 0,1 до 6%. Окраска полиолефинов, достигаемая обработкой их горячей дисперсией азокрасителя, отличается стойкостью к действию света, растворителей, трения, температуры. [c.124]

    Определение магния, никеля и цинка можно проводить различными способами. В аликвотной части раствора, после добавления цианида калия, магний определяют прямым титрованием комплексоном по эриохрому черному Т. При последующем демаскировании добавлением ( юрмальдегида выделяется свободный цинк, который также титруют раствором комплексона. Во второй порции раствора определяют суммарное содержание всех трех катионов обратным титрованием избытка комплексона раствором сульфата магния. В оттитрованном растворе проводят еще контрольное определение цинка и никеля следующим образом к раствору прибавляют цианид калия в течение 5 мин. образуются цианидные комплексы никеля и цинка выделившийся комплексон титруют раствором сульфата магния затем выделяют свободный цинк добавлением в раствор формальдегида и скова титруют комплексоном. [c.418]

    При Проведении титрований раствором ЭДТА мешающие ионы можно связывать в комплексы и таким способом устранять их влияние. Так, кальций можно титровать в присутствии железа (И1), алюминия, марганца и магния, добавляя триэтаноламин. Таким же способом, связывая алюминий триэтаноламином, можно в его присутствии титровать никель. Цинк, кадмий и никель можно титровать в присутствии алюминия, магния и кальция, прибавляя растворимый фторид. Кальций можно титровать в присутствии никеля, цинка и меди, связывая эти ионы цианидом. Цинк определяют в присутствии урана (VI), добавляя карбонат. [c.549]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Фосфат- и арсенат-ионы осаждают уран, но если тройной ацетат растворяют в воде, чтобы провести колориметрическое определение, фосфат и арсенат уранила остаются нерастворенными их отделяют фильтрованием или центрифугированием раствора. Молибден (VI) также осаждается в виде молибдата уранила его можно связать в комплекс добавлением цитрата или тартрата.Ме-шают оксалат-ионы. Фторид-ионы не мешают, но если проба содержит алюминий, может выпасть осадок NasAlFe. Магний, кобальт, никель и марганец могут заменить цинк в составе тройного ацетата на результате колориметрического определения это не отразится, но при весовом окончании определения результат получится неправильным. Некоторые металлы выпадают в осадок в виде гидроокисей. [c.910]


    Метод основан на том, что цинк в аммиачном растворе вступает во взаимодействие с трилоном Б, образуя устойчивый комплекс. При растворении навески сплава в щелочи медь, железо, магний, марганец, никель и некоторые другие компоненты сплавов остаются в нерастворившемся в щелочи остатке и определению цинка не мешают. [c.104]

    Поскольку в комплексообразовании с металлами участвуют своими неподеленными парами электронов два атома азота макроцикла, комплексообразование сопровождается изменением цвета. В случае фталоцианина цвет красителя изменяется от красновато-голубого до зеленого в зависимости от природы комплексообразователя (платина, железо, кобальт, свинец, серебро, никель, цинк, медь, литий, алюминий, бериллий, хром, церий, стронций, магний). Вследствие сложности сопряженной системы и глубокого цвета самого фталоцианина резкого изменения цвета при комплексообразовании не происходит. Как тетразапорфин и фталоцианин, так и их комплексы имеют сложные кривые поглощения с несколькими максимумами в видимой части спектра  [c.523]

    Следовые количества кальция и магния можно отделить от больших количеств металлов, образующих комплексы с цианидами (никель, цинк, марганец и др.), путем осаждения их в виде фосфатов из цианиднощелочной среды [1]. [c.198]

    В щелочных растворах образуется голубой комплекс, который не взаимодействует с цианидом калия. На этом основан метод обратного титрования, при использовании которого избыток ЭДТА титруют раствором магния с эриохромом черным Т в качестве индикатора. Никель, цинк, медь и кадмий маскируются цианидом [1694]. [c.240]

    Оказалось, однако, как это след ет из результатов, приведенных на рис 19, что активирующей способностью обладают и многие другие дв хвалентные катионы, причем степень активации фермента со многими из них была лищь незначительно ниже, чем с магнием, а с марганцем даже несколько выше По ст пени активации, при оптимальной их концентрации в среде, металлы-активаторы располагались в таком порядке марганец>маг-ний>железо, никель, цинк>кальций, кобальт>кадмий, т е. более сильное повышенпе активности транскетолазы вызывают катионы, которые образуют с белками комплексы наименыпей стабильности [c.97]

    Наряду с разрывом углерод-углеродных связей ионы металлов способствуют расщеплению связей углерод—водород. Для этого необходимо, чтобы ион металла координировался с субстратом в строго определенном месте. Целый ряд многозарядных катионов (в порядке эффективности медь(П), никель(П), лантан(1П), цинк, марганец(П), кадмий, магний и кальций) катализирует бромирование этилацетоацетата и 2-карбоэтокси-циклопентанона. Аналогично ионы цинка катализируют иодирование пирувата и о-карбоксиацетофенона. В этих процессах галогенирования кетонов скоростьлимитирующей стадией является образование енола с переносом протона на общее основание. Как и при декарбоксилировании, ион металла катализирует реакцию за счет стабилизации отрицательного заряда, генерирующегося в ходе разрыва связи углерод—водород. Относительная каталитическая эффективность перечисленных выше катионов изменяется в том же порядке, что и устойчивость их комплексов с салициловым альдегидом, а также согласуется с ено--лятным механизмом каталитического декарбоксилирования. [c.224]

    Основной простетической группой, входящей в состав большинства протеинов и обнаруживающей при этом большое число парамагнитных взаимодействий, является порфирин и его производные. Порфирин образует хелатные комплексы с ионами металлов, такими, как железо, магний, цинк, никель, кобальт, медь и редкоземельные элементы. Важнейшим среди них является комплекс с железом - гем, который участвует не только в связывании с кислородом при образовании гемоглобина, но принимает участие также и в других реакциях, таких, как электронный транспорт цитохрома, в каталитических реакциях превращения Н2О2 или в реакциях оксидирования кислот жирного ряда в процессах, катализируемых присутствием пе-роксидазы. В этих комплексах ион железа в зависимости от стадии окисления или типа лигандов может быть либо диамагнитным, либо парамагнитным. Следовательно, имеются природные диамагнитные и парамагнитные комплексы одной и той же молекулы, при этом параметры ЯМР-спектров этих [c.122]

    Амины и аммиак, которые хотя и не относятся к высокоселективным реагентам, обычно используют в качестве маскирующих агентов с показателями маскирования в пределах 5—25 по отношению к таким ионам металлов, как ртуть(И), медь(П), серебро, цинк, никель и кадмий (см. рис. 11-4). Буферные растворы уксусной кислоты можно использовать для маскирования ионов свинца с целью предотвращения осаждения сульфата свинца (показатель маскирования составляет примерно 3 или 4). Цитраты в виде 0,5 раствора при pH = 13 характеризуются показателями маскирования 26 — для алюминия и 22 —для железа(1П). Образование растворимых комплексов оксалата, цитрата и тартрата может быть использовано для предотвращения выпадения осадков гидроксидов многих металлов. При более низком значении pH оксалат в качестве маскирующего агента для этих ионов лучше, чем цитрат. Цианиды в реакции с ЭДТА при высоком pH маскируют ионы таких металлов, как серебро, кадмий, кобальт, медь, железо, ртуть, никель и цинк, однако они не оказывают влияния на алюминий, висмут, магний, марганец, свинец и кальций. Следовательно, цианиды можно использовать при дифференцирующем титровании ЭДТА смесей этих металлов. Часто вместо цианидов для маскирования предлагаются тиолы, поскольку они менее токсичны при низком [c.233]

    Порфирины образуют комплексы с ионами многих мeтaJ лoв, таких, как магний, железо, цинк, никель, кобальт, медь и серебро. В таких комплексах ион металла находится в центре порфиринового ядра, причем его четыре ли-гандных места заняты атомами азота пиррола. Наиболее важное биохимическое значение имеют комплексы, образованные железом и протопорфирином IX (гл. 3). Комплекс, в котором железо находится в двухвалентном состоянии, называется гемом, а комплекс с трехвалентным железом — гемином. [c.411]

    Элюирование 50 элементов чистой плавиковой кислотой (1—24 М) изучено Фарисом [5]. Алюминий, скандий, титан, цирконий, гафний, ниобий, тантал, молибден, вольфрам, уран и олово образуют анионные комплексы и удерживаются анионитами. Коэффициенты распределения указанных металлов, за исключением ниобия, повышаются с увеличением концентрации плавиковой кислоты. К непогл ощаемым элементам относятся щелочные металлы, марганец, кобальт, никель, медь, цинк, кадмий и щелочноземельные металлы (кроме бериллия, который удерживается анионитом, и магния, для которого получились невоспроизводимые результаты). [c.295]

    Для устранения мешающего влияния других металлов, образующих аналогичные комплексные соединения с ЭДТА, поступают следующим образом. Сначала к щелочному раствору прибавляют цианид калия, который связывает в прочные цианидные комплексы медь, никель, кобальт, марганец, серебро, цинк и кадмий, и титруют ЭДТА магний и кальций. Затем приливают раствор формальдегида. Последний выделяет цинк [c.171]

    До последних лет исследования процессов деэмульгирования сырой нефти с целью отделения эмульгированной воды или рассола носили чисто эмпирический характер. Хотя патентная литература по этому вопросу весьма обширна, в научной и технической литературе было опубликовано относительно небольшое число статей. Позднее было предпринято несколько попыток изучить причины, способствующие образованию природных эмульсий нефти, и определить состав соединений, стабилизирующих эти эмульсии. Устойчивость многих природных эмульсий часто связана с наличием мелко раздробленных неорганических веществ, а также асфальтенов и смол. В других случаях эта стабилизация обусловлена присутствием таких полярных соединений, как карбоновые кислоты и их соли [53] . В ряде интересных работ, посвященных этому вопросу [54], сообщалось о выделении из сырой нефти поверхностноактивных компонентов, адсорбционные слои которых, по-видимому, стабилизируют природные эмульсии нефти. Эти поверхностноактйвные вещества представляют собой металлсодержащие комплексы или сложные производные пор-фиринов и окисленных порфиринов. Интересно отметить, что эти циклические соединения, являющиеся типичными растительными пигментами, оказались химически устойчивыми в течение многих геологических эпох, прошедших со времени образования нефти. Авторам удалось расшифровать состав этих веществ и определить их поверхностноактйвные свойства. В этих комплексах были найдены цинк, медь, никель, кальций, магний, железо, титан и ванадий. Эти металлические комплексы порфиринов как сами по себе, так и в сочетании с парафинами и смолами способствуют образованию защитных пленок и, таким образом, облегчают взаимное эмульгирование сырой нефти и воды (или бурового рассола). [c.497]

    Арсоновые кислоты (арсоновая, фениларсоновая, п-оксифе-ниларсоновая, арсаниловая кислоты) образуют с четырехвалентными металлами IV группы Периодической системы нерастворимые в воде комплексы состава МАг. Состав осадков не строго стехиометричен, и поэтому их нельзя применять для непосредственного весового анализа. Обычно осадки сжигают до окислов металлов и взвешивают. Главное преимущество этих реагентов состоит в том, что их можно применять для избирательного определения циркония (IV), гафния (IV) и титана(IV) в присутствии многих других металлов, таких, как цинк, марганец, никель, кобальт, алюминий, медь, кальций, магний и хром. На практике их чаще всего применяют для определения циркония. [c.156]


Смотреть страницы где упоминается термин Магний комплекс с с никеля и цинка: [c.329]    [c.431]    [c.438]    [c.663]    [c.690]    [c.313]    [c.399]    [c.190]    [c.869]    [c.125]    [c.329]    [c.367]    [c.424]    [c.556]    [c.99]   
Комплексоны в химическом анализе (1960) -- [ c.418 , c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Никеля комплексы



© 2025 chem21.info Реклама на сайте