Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт следов никеля

    К нейтральным растворам солей железа (II), кобальта (II) и никеля (II) прибавляют по каплям раствор K N (тяга ). Выпадают осадки Fe( N)2 (коричневый), Со(СЫ)г (красно-коричневый структура цианида кобальта (II) соответствует формуле Со[Со(СЫ)з]2). Цианиды кобальта и никеля Ni( N)2-aq, светло-зеленый Ni[Ni( N)4]) растворяются при дальнейшем добавлении K N с образованием цианидных комплексов. Следует избе- [c.640]


    Растворение осадка I и переход к анализу катионов III группы. Перед растворением осадка следует обратить внимание на его цвет. Если он не черный, это свидетельствует об отсутствии в осадке сульфидов железа (II) и (III), кобальта и никеля. [c.275]

    Окислительно-восстановительные свойства соединений кобальта и никеля мы подробно изучать не будем. Следует помнить, что при переходе Ре — Со — N1 трехвалентное состояние становится все менее характерным. Это можнО показать на примере окисления гидроксидов типа М(ОН)2. В три пробирки налейте 1—2 мл растворов солей Ре +, Со + и N1 + и прилейте столько же раствора щелочи. Образовавшийся белый Ре(0Н)2 очень быстро побуреет, розово-красный Со(0Н)2 очень медленно превратится в коричневый Со(ОН)з, а желтовато-зеленоватый КЧ(0Н)2 не изменится. [c.299]

    Разнообразное техническое применение металлов семейства железа нельзя описать в кратком обзоре. Следует помнить, что почти все конструкционные материалы современного машиностроения построены на базе железа, кобальта и никеля. [c.140]

    К восьмой группе элементов периодической системы относятся три триады железа, рутения и осмия. Номер группы обычно отвечает максимальной валентности элементов по кислороду. На этом базировались попытки К. Горалевича (1929—1932 гг.) получить восьмивалентные соединения железа, никеля и кобальта. Как известно, эти попытки окончились неудачно. Позже Б. Ф. Ормонт, исходя из современных представлений о нормальной и возбужденной валентности, показал, что для этих элементов невозможно достичь валентности, равной восьми. Из девяти элементов этой группы только два элемента рутений и осмий проявляют эту высокую валентность. Поэтому в ряде вариантов периодической системы в последнее время номер 8В над этой группой не ставят. Все рассматриваемые элементы относятся к а -типу, но электронные структуры оболочек атомов железа, кобальта и никеля различны. Если с точки зрения строения атома аналогия -элементов в каждой подгруппе определяется суммарным числом внешних 5- и -электронов слоя, соседнего с внешним, то истинными аналогами следует считать подгруппы элементов, расположенные по вертикали. Таким образом, в 8В-гру-ппе элементов три подгруппы железо-рутений—осмий кобальт—родий—иридий и никель—палладий—платина. Свойства этих элементов и их соединений и будут нами рассматриваться по данным подгруппам. [c.345]

    Железо, кобальт и никель в ряду стандартных электродных потенциалов расположены до водорода, платиновые металлы — после. Поэтому первые распространены в природе в виде соединений (оксиды, сульфиды, сульфаты, карбонаты), в свободном состоянии встречаются редко — в виде железных метеоритов. По распространенности в природе за железом следует никель, а затем кобальт. [c.208]


    Из данных таблицы следует, что константы устойчивости увеличиваются при переходе эт марганца к железу, кобальту и никелю, достигают максимального значения у комплексов меди и снова уменьшаются при переходе от меди к цинку. Такие соотношения характерны и для комплексов этих металлов со многими другими лигандами. [c.251]

    В качестве катализаторов предлагаются различные кобальтовые контакты (кобальт-ториевый, кобальт-медный, кобальт-железный и др.), а также карбонилы кобальта и никеля [205, 209—212]. Для нревращения альдегидов в спирты, кроме кобальта на кизельгуре, рекомендуются следующие гидрирующие катализаторы никелевый, медно-хромовый, а для сернистого сырья — сульфидный (сульфиды никеля, вольфрама и др.) [206, 213]. Пристальное внимание химиков привлекает к себе механизм реакции [193, 205-207, 212, 214]. [c.327]

    Электронные структуры железа, кобальта, никеля и платиновых металлов указаны в табл. 19.1 эти структуры соответствуют энергетическим уровням, приведенным на рис. 5.6. Следует отметить, что каждый из рассматриваемых атомов имеет два внешних электрона в случае железа, кобальта и никеля это электроны на 45-орбитали, для рутения, родия и палладия — на 5 -орбитали для осмия, иридия и платины — на б5-орбитали. Следующая внутренняя оболочка у этих элементов не завершена Зй-орбиталь (или соответственно 4d- и 5d- [c.543]

    Прежде всего следует разграничивать два вида магнетизма — диамагнетизм и парамагнетизм. Вещество, состоящее из диамагнитных атомов, слабо выталкивается магнитным полем сильного магнита. В противоположность этому парамагнитное вещество втягивается полем сильного магнита. У небольшого числа элементов, например железа, кобальта или никеля, соседние атомы способны взаимодействовать друг с другом таким образом, что при этом возникает особый вид магнетизма, называемый ферромагнетизмом. Такие элементы в чистом виде или в виде сплавов используются для изготовления всевозможных магнитов правда, здесь мы не будем подробно рассматривать явления ферромагнетизма. [c.86]

    Аналогично осуществляется разделение ионов РеЗ+—Си +— N1 + и отделение их от Ыа+-, К+- и ЫН4+-ионов. Подбирая оптимальные условия, удается с применением ионита 2.4 7 отделить следы меди от никеля, никеля от цинка, кобальта от никеля [1], ртуть(П) от меди(П) [1, 16], с применением ионита 2 4.16 — разделить пары Си +—Со + Си +—1п + Си +—Mg +. Процесс разделения лантаноидов принципиально также осуществим, но практически протекает менее успешно [167]. [c.304]

    Следует отметить, что работы Мозли впервые дали возможность независимым методом установить последовательность расположения химических элементов в периодической таблице. Разрывы на прямых линиях рис. 8 соответствовали пробелам в периодической таблице. Как и ири химической классификации, согласно закону Мозли, аргон следовало расположить перед калием, кобальт — перед никелем, теллур — перед иодом и торий — перед протактинием. [c.201]

    Ф. П. Ивановский, В. А. Донцова, Г. С. Бескова [89] исследовали кинетику гидрирования Sj на сульфидах железа, кобальта и никеля при 220—400 °С и содержании сероуглерода в газе от 1 до 5%. Они получили следующее кинетическое уравнение  [c.307]

    На поведение углей в процессе гидрогенизации влияют присутствующие в углях микроэлементы. Была доказана статистическая значимая корреляционная связь глубины превращения органической массы углей с содержанием в них микроэлементов. Установлен следующий ряд относительной каталитической активности микроэлементов в углях при гидрогенизации N1 > Со > Си > V > В, РЬ, Сг > Ва > Мп > Са. Ряд элементов — щелочные, ванадий, барий и некоторые другие — может отрицательно воздействовать на процесс гидрогенизации. Предложен геохимический мультипликативный показатель, представляющий собой отношение произведения содержания кобальта и никеля к произведению галлия и ванадия (рис. 121). Между этим показателем и степенью превращения органической массы углей при гидрогенизации было получено уравнение регрессии у = 56,2 + 25,6 1д [(Со - Ы1)/(Са Л/ 10)]. [c.239]

    Разделение этилксантогенатом калия и другими производными ксантогеновой кислоты. Фотометрический метод определения кобальта в присутствии посторонних элементов экстрагированием этилксантогената кобальта четыреххлористым углеродом в аммиачном растворе описан на стр. 153. Другие методы разделения также основаны на нерастворимости этилксантогената кобальта в аммиаке. Разработана методика [585, 586] отделения кобальта от никеля. Поступают следующим образом [1481]. [c.75]

    Определение кобальта в никеле и его сплавах. Фотометрическое определение следов кобальта в металлическом никеле и его сплавах с железом 2-нитрозо-1-нафтолом [1188]. Металл растворяют в смеси соляной и азотной кислот, раствор выпаривают досуха и растворяют остаток в соляной кислоте. Из этого раствора, 6—8 N по соляной кислоте, экстрагируют хлорид железа изопропиловым эфиром. К водной фазе прибавляют смесь азотной и серной кислот и выпаривают до появления белых паров. Остаток растворяют в смеси 5 мл концентрированной соляной кислоты и 20 мл воды. К аликвотной части раствора прибавляют 1 мл 50%-ного раствора ацетата натрия и 50 мл раствора реагента. Последний готовят следующим образом. Смешивают 30 мл слабощелочного 50%-ного раствора трехзамещенного цитрата натрия с 50 мл ледяной [c.199]


    Увеличение электронного дефицита на атоме металла благоприятствует, как правило, повышению доли 1,4-структур. Из табл. 6 следует, что в присутствии аллилгалогенидных комплексов получаются полимеры с большим содержанием 1,4-звеньев, чем в присутствии чистых комплексов того же переходного металла. В полиизопренах, образующихся в присутствии продуктов реакции соединений кобальта, молибдена, никеля, хрома и циркония с галогенидами или алкилгалогенидами алюминия или титан.а, содержание 1,4-структур увеличивается с повышением электроноакцепторной способности сокатализатора и мольного отношения соката-лизатора к металлу. [c.104]

    Полимеризация в растворе. Как уже отмечалось (стр. 181), промышленные способы получения полнбутадиена в растворе базируются на использовании литийорганических соединений или ионно-координационных систем, содержащих металлы переменной валентности (титан, кобальт и никель). Технологическое оформление этих процессов включает следующие основные стадии 1) очистка мономера и растворителя 2) приготовление шихты (смесь бутадиена с растворителем) 3) полимеризация 4) дезактивация катализатора и введение антиоксиданта 5) отмывка раствора полимера от остатков катализатора 6) выделение полимера из раствора 7) сушка и упаковка каучука. [c.184]

    Четвертый ряд также начинается со щелочного металла — калия. Судя по тому, как изменялись свойства в двух предыдущих рядах, можно было бы ожидать, что н здесь они будут изменяться в той же последовательности и седьмым элементом в ряду будет опять галоген, а восьмым — благородный газ. Однако этого ие наблюдается. Вместо галогена на седьмом месте находится марганец— металл, образующий как основные, так и кислотные оксиды, из которых лишь высший МпгОт аналогичен соответствующему оксиду хлора С12О7). После марганца в том же ряду стоят еще три металла — железо, кобальт и никель, очень сходные друг с другом. И только следующий, пятый ряд, начинающийся с меди, заканчивается благородным газом криптоном. Шестой ряд снова начинается со щелочного металла рубидия и т. д. Таким образом, у элементов, следующих за аргоном, более или менее полное поч вторение свойств наблюдается только через восемнадцать элементов, а не через восемь, как было во втором и третьем рядах. Эти восемнадчать элементов образуют четвертый — так называемый большой период, состоящий из двух рядов. [c.50]

    Большинство каталитически активных металлов, как указывалось выще, представляет собой элементы VI и VIII групп Периодической системы элементов Д. И. Менделеева (хром, молибден, вольфрам, железо, кобальт, никель, платина и палладий). В некоторых случаях сульфиды и окислы этих металлов в свободном состоянии (без носителей) обнаруживают кислотные свойства. Примером может служить дисульфид вольфрама, обладающий каталитической активностью в реакциях гидроизомеризации, гидрокрекин" га и насыщения кратных связей. Так как серосодержащие соединения присутствуют практически в любом сырье, следует применять серостойкие катализаторы — сульфиды металлов. В большин-, стве современных процессов в качестве катализаторов используют кобальт или никель, смешанные в различных соотношениях с молибденом, на пористом носителе (окиси алюминия). Иногда применяют сульфидный никельвольфрамовый катализатор. [c.215]

    По уменьшению термической устойчивости безводные оксонитраты (V) располагаются в следующий ряд нитраты щелочных металлов (575—675°С) нитраты щелочноземельных металлов (575—560°С) нитраты кобальта (II), никеля (II), меди (II), цинка (II) (270—350°С) бериллия (125°С) xpoiwa (III) (50°С) нитрат водорода (на свету при обычных условиях) нитраты галогенов (I) (—10, —0°С). [c.68]

    Перспективным направлением для качественного анализа является комбинированное использование осадочной хроматографии в сочетании с распределительной. Идея такого рода комбинации в хроматографическом методе разделения смесей заключается в следующем. Вначале получают первичную осадочную хроматограмму ионов на бумаге, пропитанной органическим осадителем, а затем промывают ее не водой, а органическим растворителем, способным частично растворять осадки и переносить их с различной скоростью. Например, можно получить осадочную хроматограмму путем нанесения раствора, содержащего смесь катионов меди, кобальта и никеля (двухвалентных) на бумагу, предварительно обработанную рубеановодород-ной кислотой и парами аммиака, а потом разогнать образовавшиеся зоны осадков водно-бутаноловым и водно-про-паноловым растворителями [161]. [c.209]

    Железо, кобальт и никель — активные металлы, являющиеся соответственно d -, (f- и d -3лементами, которые в своих соединениях проявляют следующие степени окисления железо +2, -1-3 (наиболее устойчивая) и -f-б кобальт и никель +2 (устойчивая), +3 и +4. [c.428]

    В основу метода положено предварительное выделение железа экстракцией дибутиловым эфиром б виде HFe l , реэкстракцией этого соединения в водную фазу с последующим определением железа в виде ферроин-иодида. Для повыщения чувствительности метода можно вместо иодид-иона использовать сульфофталеиновые красители, например бромфеноловый синий. При этом образуется ионный ассоциат (Vax 610 нм, е = 5,9 10 ). Но этот последний метод при непосредственном определении железа в солях кобальта имеет два недостатка 1) очень узкий интервал значений pH прн экстракции ассоциата (pH 8,7—8,9) 2) малую избирательность, так как следы никеля, кобальта и меди при замене иодида на бромфеноловый синий дают интенсивно окращепные, экстрагирующиеся ионные ассоциаты. [c.158]

    Таким образом, из рассмотрения характеристических соединений следуют общие выводы о закономерностях изменения кислотно-основных, окислительно-восстановительных свойств и стабильности соответствующих степеней окисления. Так, для железа из известных степеней окисления +2, +3 и +6 наиболее стабильна в обычных условиях степень окисления +3. При переходе к кобальту и никелю повышается стабильность низшей степени окисления, в то время как высшая степень окисления +6 для них не свойственна вовсе. Для первых двух элементов триады (Ре и Со), для которых сгабильности степеней окисления +2 и -НЗ сопоставимы, существуют смешанные оксиды Э3О4 шпинельного типа, в то время как для никеля подобный оксид неизвестен, что свидетельствует о меньшей стабильности степени окисления -Ь3 для этого элемента. [c.405]

    Исходя из этих соображений следует, что атомы металла, расположенные в плотно упакованных местах решетки (атом S на рис. 111), должны преодолеть большее расстояние переброса , и э к ргия активации такого перехода будет большей, чем для слабо связанного поверхностного атома Р. Несмотря на все эти энергетические ограничения, скорость перехода ионов металла в раствор, равная при равновесном гютен-циале току обмена, нередко достигает очень больших значений. Для многих металлов ток обмена в растворах одноименных ионов составляет 10 10 а/см . Этому соответствует скорость обмена ионов между металлом и раствором, равная от 10 до 10 атомов в секунду (в расчете на двухвалентный металл). Для железа, кобальта и никеля эта скорость значительно меньше приведенного нижнего предела. [c.198]

    Щелочные растворы применяют главным образом при нанесении покрытий на коррозионно стойкую сталь атюмнний титан, магний, различные неметаллы а также при необходимости осаждения многокомпонентных покрытий (сплавов) на основе никеля или кобальта (например никель кобальт-фосфорных или кобальт вольфрам фосфорных и других покрытий) При корректировании щелочные растворы могут работать длительное время благодаря наличию в их составе комплексообразователей (таких как лимоннокислый натрии и аммиак) Но в результате регулярного добавления гипофосфита в ванне >астет концентрация фосфитов Добавка хлористого никеля и аммиака увеличивает концентрацию хлористого аммония что нежелательно Так, в растворе при 8—9 следующего состава (г/л) хлористый никель 45 гипофосфит натрия 20 хлористый аммоний 45 лимоннокислый натрий 45 максимальная [c.24]

    Как это следует из табл. 15-12, кобальт и никель удаляются из раствора на катионитовом фильтре весьма эффективно. Так, радиоактивность по кобальту уменьшается почти на два порядка. Железо катионитом задерживается слабо, а хром не задерживается совсем. Это объясняется тем, что хром лолио-стью, а железо в значительной мере находятся в кислотном отмывочном растворе в виде анионных комплексов, а именно в виде [ r204] и [Fe( 204)3] . Данные исследований дезактивации образцов свидетельствовали о высокой дезактивирующей способности исследуемых растворов (по Сг получена полная дезактивация, по Со ° — уменьшение в 105 раз за два цикла, по — в 80 раз за два цикла), что [c.155]

    Рентгеноструктурное исследование протонированных о-гид-роксифенилиминодиацетатов меди, кобальта и никеля подтвердило вывод о координации кислорода недиссоциированного фенольного гидроксила. Выявлено [433], что атом меди в комплексе [MHL(H20)2] образует координационный полиэдр, в экваториальной плоскости которого находятся атом азота, атомы кислорода двух карбоксильных групп и одна молекула воды. Аксиальные положения заняты атомом кислорода недиссоциированной фенольной гидроксигруппы и второй молекулой воды (рис 2 30) Медь образует с соединением (2 3.7), выступающим в качестве тетрадентатного лиганда, три пятичленных цикла два глицинатных и один (плоский), примыкающий непосредственно к сопряженной системе фенильного кольца. Следует отметить, что пятичленный цикл с участием протонированной гидроксигруппы алифатического характера имеет неплоское строение [434]. [c.235]

    Получение реактивного топлива. Цеолиты СаА успешно применяются д.пя получения высококачественного реактивного топлива [96]. С этой целью керосин подвергают двухступенчатой гидрогенизации в следующих ус.ловиях температура 121—455 °С, давление от 22-10 до 140-10 Па (22—141 кгс/см ), объемная скорость жидкого сырья 0,2—6,0ч , расход На от 0,26 до 1,4 м /л углеводородов. В реактор за/ружен кобальт-молибденовый, кобальт-вольфрамовый, никель-лго-либденовый илп молибден-вольфрамовый катализатор на носителе — окиси алюминия или алюмосиликате. Гидрогенизацию проводят примерно при тех ко температуре и давлении объемная скорость изменяется в пределах 1—6 ч" . После удаления нормальных иарафинов п солитами СаА продукт обладает отличными показателями вя.экости и температуры застывания. [c.467]

    Вычислить концентрацию (мкг/мл) кобальта и никеля в растворе для следующих вариантов 1) Aggg = 0,820 A qq = 0,083  [c.196]

    Полинг [1] придерживается точки зрения, согласно которой между металлическими и обычными ковалентными связя.ми пет существенного различия (впервые эту мысль высказал Го,)ьд-шмидт в 1928 г.). Однако в металлических кристаллах и отличие от обычных кристаллов с ковалентными связями, а1С правило, реализуются очень высокие координационные числа. Более того, в таких металлах, как натрий, для образования 8+6 связей в ОЦК-структуре доступны только четыре орбитали (одна 5 и три р). Полинг предположил, что в образовании связей участвуют все или большинство внешних электронов атома, включая -электроны в с/гучае переходных металлов, п что существует особый тип резонанса (см. ниже). Из этнх положений следует, что кратность связи и валентность могут б ,иь дробными величинами. Уменьшение размеров атомов в ряду К, Са, 5с, Т1, V (аналогично от КЬ к МЬ и от Сз к Та) и примерное постоянство размеров атомов для элемента V— ТИ групп в каждом ряду переходных металлов объясняется следующим образом. При переходе от К к V происходят увеличение числа связывающих электронов от 1 до 5 и постепенный рост числа ковалентных связей, участвующих в резонансе, и, следовательно, монотонное уменьшение межатомных расстояний. Далее предполагается, что у атомов элементов от Сг до N1 в связывании участвуют не все девять имеющихся орбиталей (одна а, три р и пять с1), а лишь 5,78 из них являются устойчивыми сиязываюнти.ми 5р -орбпталями, еще имеются 2,44 атомной несвязывающей ( /-орбиталн, а оставшиеся 0,78 металлической орбитали обеспечивают несинхронный резонанс между отдельными валентными связями. Эти значения былн вычислены из магнитной восприимчивости (при насыщении) ферромагнит1н. железа, кобальта и никеля. Электронные структуры Полинга для ряда металлов приведены в табл. 29.6. У атомов Сг, А л и Ре число -электронов меньше, чем число орбиталей, так что спаривания спинов не происходит. Одиако у атома Со на 3,12 [c.459]

    Методы отделения кобальта от мешающих элементов (или наоборот) перед заключительным определением здесь менее многочисленны, чем при анализе руд и сплавов кобальта на железной основе. Обычно кобальту сопутствует в значительных количествах только какой-либо один элемент, составляющий основу сплава содержание других элементов невелико. Так, при определении кобальта в никеле или в сплавах с высоким содержанием последнего применяют следующие методы предварительного отделения или маскирования посторонних элементов. Железо экстрагируют в виде хлорида изопропиловым эфиром [1188], осаждают окисью цинка [109] или маскируют цитратом аммония [1417]. Медь связывают тиомочевиной [1417]. Для отделения кобальта от большей части никеля пользуются экстракцией роданидных [775], антипирин-[1518] или дианти-пирилметанроданидных [88] комплексов кобальта, осаждением диэтилдитиокарбамината [1200] или 1-нитрозо-2-нафтолата кобальта, поглощением хлоридного комплекса кобальта анионитом [1082]. В одной из работ рекомендовано [1002] перед [c.198]

    Из приведенного ряда следует, что В1 относится к металлам, наиболее эффективно экстрагируемым алифатическими монокарбоновыми кислотами, и при его извлечении из технологических растворов возможна очистка от таких основных примесей, как железо, свинец, медь, серебро, кадмий, цинк, никель (рис. 3.13). В [85] показано, что алифатическими монокарбоновыми кислотами В] экстрагируется в виде мыла В1Кз, и при этом возможно его отделение от кобальта и никеля. Показано [100], что висмут экстрагируется расплавом стеариновой кислоты из перхлоратных, сульфатных и хлоридных растворов в виде В1Кз, где Я — анион монокарбоновой кислоты. Холь-киным с соавторами [101] показана перспективность использования процесса экстракции металлов монокарбоновыми кислотами для синтеза висмутсодержащих сверхпроводящих материалов состава В12Са8г2СиО с. [c.69]


Смотреть страницы где упоминается термин Кобальт следов никеля: [c.69]    [c.350]    [c.66]    [c.266]    [c.202]    [c.209]    [c.309]    [c.149]    [c.119]    [c.18]    [c.71]    [c.417]    [c.90]    [c.261]    [c.18]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.735 ]




ПОИСК





Смотрите так же термины и статьи:

след

след н след



© 2025 chem21.info Реклама на сайте