Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители неводные взаимодействие с растворенным веществом

    Кислотно-основное взаимодействие растворенного вещества с растворителем. Особый интерес для аналитической химии представляет необычное поведение в неводных растворах многих веществ. Например. СНзСООН, обладающая в водных растворах свойствами слабой кислоты, ведет себя в жидком аммиаке как сильная кислота, а в среде жидкого фтористого водорода — как основание. [c.392]


    Влияние неводных растворителей на растворимость. При добавлении к водному раствору соли смешивающегося с водой неэлектролита, например ацетона, спирта и др., растворимость соли уменьшается. Это можно объяснить тем, что молекулы неэлектролита гидратируются, причем с увеличением количества неэлектролита гидратная оболочка ионов разрушается, и в итоге соль выпадает в осадок. Однако некоторые соли растворимы и в органических растворителях. Это происходит в том случае, когда силы межатомных взаимодействий в твердых веществах невелики и преодолеваются даже небольшими энергиями сольватации органического растворителя (например, при растворении перхлората бария в ацетоне) или если ионы твердых веществ особенно легко сольватируются (например, при растворении солей Ы+ или перхлората натрия в спирте). [c.197]

    Работы по созданию химических источников тока, использующих неводные растворители, по электросинтезу ряда веществ и электроосаждению металлов в неводных средах вызвали интерес к исследованию структуры двойного слоя и кинетики реакций в неводных растворителях. Измерения в неводных растворах позволяют решить и ряд теоретических проблем, например выяснить роль взаимодействия металл — растворитель, роль адсорбции атомов водорода и кислорода в структуре двойного слоя и др. [c.389]

    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]

    Растворение веществ часто сопровождается выделением или поглощением теплоты, что является следствием химического взаимодействия растворенного вещества с растворителем. Этот процесс называется гидратацией, если растворитель — вода, или сольватацией, если взят неводный растворитель. Тепловой эффект растворения определяется для одного моля растворенного вещества и называется молярной теплотой растворения. Растворы бывают насыщенными, ненасыщенными и пересыщенными. [c.89]


    Химическая теория растворов, разработанная главным образом Д. И. Менделеевым (1887), рассматривает процесс образования растворов из компонентов как химическое взаимодействие. Растворы содержат ассоциации, образовавшиеся при взаимодействии молекул растворителя и растворенного вещества. Для водных растворов эти ассоциации получили название гидратов (гидратная теория растворов). Ассоциации молекул растворенного вещества с молекулами неводного растворителя называются сольватами. Гидратация и сольватация подтверждаются изменениями энергии при образовании растворов. [c.194]

    Вот почему напрашивается уточненное определение понятия кислота в рамках теории электролитической диссоциации Кислота — это электролит, который в данном растворителе от-ш,епляет катион, представляюш,ий собой продукт присоединения катиона водорода Н" " (протона) к молекуле растворителя . Определение во всем (за исключением разве пространности, но это, как мы увидим далее, дело поправимое) лучше традиционного. Лучше хотя бы потому, что, во-первых, позволяет числить свойства кислот и за неводными растворами, во-вторых, в основе проявления веществом кислотных свойств лежит химическое взаимодействие растворенного вещества с растворителем  [c.6]

    Взаимодействие двух веществ А и В в растворителе 8 — наиболее часто встречающийся вариант проведения химических реакций. Большей частью при этом растворитель считают индифферентным, хотя эта предпосылка соблюдается относительно строго лишь в тех случаях, когда энергия взаимодействия между А и В значительно превышает энергию взаимодействия каждого из этих веществ с растворителем. Это условие в водных растворах вследствие специфических особенностей воды соблюдается редко. Поэтому исследование взаимодействия двух веществ в индифферентном растворителе может быть с известной степенью приближенности реализовано лишь в случае неводных растворов. [c.418]

    Новейшие исследования показали, что в растворах электролитов, растворенных в жидких неводных растворителях, кроме обычных ионов, имеются и другие ионы и молекулы, образование которых обусловливается взаимодействием растворенного вещества с растворителем, причем влияние индивидуальных свойств растворителя сказывается на электропроводности электролитов, на состоянии ионов в растворах, на направлении реакций, на химических свойствах растворенного вещества и т. д. [c.291]

    Новейшие исследования показали, что в растворах электролитов, растворенных в жидких неводных растворителях, кроме обычных ионов, имеются и другие ионы и молекулы, образование которых обусловливается взаимодействием растворенного вещества с растворителем, причем влияние индивидуальных свойств растворителя [c.347]

    В неводных растворах может протекать сольво-лиз химических веществ (подобно гидролизу в водных растворах) — обменная реакция взаимодействия растворителя с растворенным веществом. Например, сольво-лизу подвергается сульфат калия в безводном фториде водорода  [c.105]

    Таким образом, не только диэлектрическая проницаемость растворителя влияет на поведение одного и того же электролита в неводных растворах. Причина электропроводности лежит во взаимодействии растворенного вещества с растворителем. [c.177]

    Изучение неводных растворителей, в том числе и трифторида брома, сыграло огромную роль в формировании современных представлений в области теории растворов и, особенно, при решении проблемы химического взаимодействия растворенного вещества с растворителем [60]. [c.148]

    Закономерности, касающиеся растворимости в неводных растворах неэлектролитных соединений, выявлены, пожалуй, еще хуже, чем в случае растворимости неэлектролитов. Исключением здесь являются растворы газов в неводных растворителях. Для растворимости газов найдены довольно строгие количественные закономерности, которые выполняются тем лучше, чем меньше специфическое взаимодействие газа с растворителем. Вот почему наиболее впечатляющее совпадение эксперимента с теорией получено для растворов инертных газов. Что же касается растворимости твердых неэлектролитных соединений, то единственным теоретическим обобщением здесь можно считать уравнение, выведенное почти столетие назад русским физико-химиком И. Ф. Шредером (более поздние уравнения, предложенные другими исследователями, основываются на уравнении Шредера и почти всегда содержат эмпирические параметры). Однако не случайно уравнение Шредера носит название уравнения идеальной растворимости . Дело в том, что оно выведено в предположении, что образующийся раствор идеален, то есть растворенное вещество и растворитель не взаимодействуют, а при образовании раствора не изменяется объем, не выделяется и не поглощается тепло. Каждый, кому хотя бы раз в жизни приходилось готовить раствор, понимает, сколь далек такой случай от реальных. Стоит ЛИ теперь удивляться, если часто, очень часто, между [c.69]


    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Д. И. Менделеев впервые указал на необходимость учета всех и всяких взаимодействий между всеми частицами растворов. В соответствии с этими взглядами следует исходить из равноправия компонентов, образующих раствор, и взаимовлияния всех составляющих его частиц. Это особенно важно для растворов электролитов, представляющих собой типичные гетеродинамные, по классификации В. К. Семенченко, системы (системы, в которых действуют различные по характеру силы между частицами), а также для водно-органических систем. На необходимость исходить из равноправия растворенного вещества и растворителя при изучении рас творов электролитов указывает В. К. Семенченко. При этом он подчеркивает необходимость рассмотрения как растворителя, так и растворенного вещества с молекулярной точки зрения. Главным образом советскими исследователями обнаружено весьма большое влияние растворителей на свойства растворов электролитов (например, структурных особенностей воды на свойства и структуру водных растворов электролитов особенностей неводных растворителей на свойства неводных растворов). Важность анализа влияния растворителей на состояние электролитов в растворе первостепенна для всей проблемы растворов. Именно в исследованиях такого рода было обнаружено определяющее значение короткодействующих сил между частицами для свойств жидких растворов. [c.178]

    Каждый из перечисленных вариантов взаимодействия растворенного вещества с растворителем может быть положен в основу методов синтеза в неводных растворах. [c.30]

    Сравнение со стандартом исключает необходимость строгого подбора электродных пар, растворителей, титрантов, обеспечивающих эквивалентное взаимодействие реагента с определяемым веществом. Это особенно важно при работе с неводными растворами. [c.188]

    Применение неводных растворителей в полярографии. Методы полярографии неводных растворов используют в физической химии для исследования механизма и кинетики электродных процессов, влияния неводных растворителей на поведение растворенного вещества и свойства растворов, в органической химии — для исследования структуры и реакционной способности органических соединений, изучения таутометрии и изомерии, а также кинетики химических реакций в неводной среде, в аналитической химии — для исследования кислотно-основного взаимодействия, окислительновосстановительных реакций, комплексообразования, методов разделения, концентрирования, идентификации и количественного определения неорганических и в особенности органических веществ, которые малорастворимы или полностью нерастворимы в воде [761]. [c.228]

    Единые нулевые коэффициенты активности 7о характеризуют изменения энергии вещества при его переходе от бесконечно разбавленного раствора в любом растворителе к бесконечно разбавленному водному раствору. Эти коэффициенты не зависят от концентрации, а только от различия в состоянии вещества в бесконечно разбавленном водном и в бесконечно разбавленном неводном растворе и, следовательно, зависят только от взаимодействия ионов с водой и неводным растворителем, нанример со спиртом. Они зависят от среды, но не от концентрации вещества в растворе. [c.27]

    В теории растворов Д. 11. Менделеев указал общие. закономерности (общее свойство — растворимость наличие динамического равновесия), специфические свойства (водные и неводные растворы, электролиты и неэлектролиты, разбавленные и концентрированные растворы) и индивидуальные свойства, зависящие от природы двух взаимодействующих веществ растворителя и растворенного вещества. [c.66]

    Для характеристики химических реакций в неводных растворах, как правило, применяют как классификацию Бренстеда, так и Льюиса. По специфическому взаимодействию растворителя с анионами и катионами Д. Паркер [12] предлагает делить растворители на диполярные апротонные и протонные. Протонные растворители способны образовывать водородные связи с ионами растворенного вещества, в го время как диполярные апротонные растворители таких связей не образуют. Поэтому процессы сольватации ионов в таких растворителях существенно отличаются. [c.6]

    Аномалии в электропроводности неводных растворов объясняются особенностями взаимодействия растворяемого вещества с растзорктелем. Влияние природы растворителя на диссоциацию и электропроводность можно лучше понять, если принять во вни- [c.307]

    О настоящее время в теории аналитической химии неводных О растворов приобрели особое значение представления о влиянии индив(идуальн0г0 характера и физических свойств растворителя, концентрации раствора и природы растворенного вещества на состояние динамических равновесий взаимодействия между ионами и молекулами растворенного вещества и растворителя. Это влияние сказывается на физико-химических свойствах растворенного вещества (электропроводности, растворимости, способности к диссоциации, ассоциации, комплексообразованию и т. д.), а также на преобладающем направлении реакций в растворах. [c.7]

    Современная физико-химическая теория кислот и оснований, развитая одновременно Дж. Бренстедом, Т. Лоури, Н. Бьерумом в 1923 г., объясняет физические и химические взгляды на диссоциацию кислот и оснований. Протолитическая теория охватывает как водные, так и неводные растворы веществ. Свое название она получила потому, что основным реагирующим ионом в реакциях кислотно-основного взаимодействия является простейший из ионов —протон. Значительный вклад в развитие этой теории внесли М. И. Усанович и Н. А. Измайлов, которые предложили схему диссоциации кислот и оснований с учетом продуктов их предшествующей ассоциации с молекулами растворителя. [c.87]

    Результаты измерений представлены на рис. 1 и 2. Для исследования были выбраны две группы растворов — водноорганические и неводные. Такой выбор обусловлен, главным образом, тем, что плотность и коэффициент о емного расширения растворов определяются их строением и, в первую очередь, степенью взаимодействия растворенного вещества и растворителя. Известно, что взаимодействие полярных растворителей, имеющих водородные атомы, гидроксильные или аминогруппы, сводится в основном к образованию водородных связей [5]. При этом очевидно, что чем выше вероятность возникновения водородной связи и чем прочнее эта связь, тем боЛее ассоциирована жидкость. По-видимому, высокая ассоциация жидкости способствует образованию консервативных структур, которые в меньшей степени зависят от температуры. Таким образом, следовало ожидать, что растворы, в состав которых входят вещества, способные образовывать сильную водородную связь, должны обладать малым коэффициентом объемного расши- [c.80]

    Изучение природы и состава химических соединений, образующихся при растворении ряда веществ в различных растворителях (Д. И. Менделеев, Д. П. Коновалов), а также исследование водных и неводных растворов с точки зрения происходящих в них химических и физических процессов (Д. П. Турбаба, Д. П. Хрущев, В. Ф. Тимофеев) привело к выводу о том, что диссоциация электролитов на ионы является следствием химического взаимодействия между растворяемым веществом и растворителем (И. А. Каблуков). [c.14]

    Уравнения (IV.15) — (1У17) используют также для определения I и а в неводных растворах кислот и оснований. Согласно современной теории кислот и оснований Бренстеда и Лоури кислоту определяют как вещество, способное отдавать протон, а основание — как вещество, способное принимать протон от кислоты. Реакция присоединения водорода называется реакцией протонирования. Нейтрализация сопровол<дается переходом протона от кислоты к основанию, причем кислота или основание может быть нейтральной молекулой или ионом. Кажущаяся сила кислот и оснований в любом растворителе зависит от степени их взаимодействия с растворителем. Это определяется кислотностью или основностью самого растворителя. [c.47]

    Первые исследования электропроводности неводных растворов были проведены Э. X. Ленцем (1882 г.) и И. А. Каблуковым (1889 г.). Каблуков показал, что имеется параллелизм между электропроводностью раствора и диэлектрической проницаемостью растворителя. Влияние диэлектрической проницаемости на степень диссоциации вещества, естественно, должна быть значительным, так как диэлектрическая проницаемость определяет силу кулоновского взаимодействия образовавшихся ионов. [c.121]

    При взаимодействии в кислых растворах различных дитио-карбаминатов с молибдатами всегда образуются вещества, не растворимые в воде и отличающиеся окраской красного цвета разных оттенков [278]. В зависимости от природы дитиокарба-мината эти продукты характеризуются различной способностью растворяться в неводных растворителях. Продукты реакции незамещенных дитиокарбаминатов с молибдатами экстрагируются лучше, чем продукты взаимодействия с дитиокарбаминатами, в состав которых входят длинные алифатические радикалы. [c.84]


Смотреть страницы где упоминается термин Растворители неводные взаимодействие с растворенным веществом: [c.208]    [c.177]    [c.165]    [c.87]    [c.555]    [c.345]    [c.345]    [c.128]    [c.159]    [c.68]    [c.307]    [c.86]   
Химический анализ (1979) -- [ c.75 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ион растворитель

Неводные растворители

Растворители взаимодействие с растворенным

Растворы неводные



© 2025 chem21.info Реклама на сайте