Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки полярные взаимодействия

    Аминокислоты, содержащие полярные группы, которые достаточно сильно взаимодействуют с водой, называют гидрофильными аминокислотами (Asp, Gly, Lis, His, Arg, Gly, Ser, Thr). Такие аминокислотные звенья обычно располагаются на поверхности частиц белка. Аминокислоты, имеющие неполярные боковые заместители, не несут парциальных зарядов и не сольватируются заметно водой. Они преимущественно располагаются внутри частиц белка, сводя тем самым к минимуму их соприкосновение с водой. Это гидрофобные аминокислоты. [c.337]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    В этом разделе описан один из наиболее широко применяемых способов очистки ферментов —высаливание белков при высокой концентрации солей. Этот способ отличается по своему результату от всаливания , описанного в разд. 3.2. Хотя белки типа глобулинов (т. е. белки, растворимость которых низка при низкой ионной силе вблизи их изоэлектрической точки) обычно характеризуются также относительно низкой растворимостью и при высокой концентрации соли, из этого правила есть много исключений. Так, сывороточные у глобулины, типичные белки, нерастворимые при низкой солевой концентрации, осаждаются сульфатом аммония (при относительно низкой его концентрации— около 1,5 М). С другой стороны, некоторые другие сывороточные глобулины (а и р) обладают более высокой растворимостью в сульфате аммония и осаждаются им при концентрации около 2,5—3,0 М. Процесс высаливания в основном зависит от гидрофобности белка, тогда как всаливание в большей степени определяется распределением зарядов на поверхности белковой глобулы и полярными взаимодействиями ее с растворителем. [c.61]

    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    Было высказано предположение [36], согласно которому стабильность структуры макромолекул и мембр-ан обеспечивается главным образом гидрофобными взаимодействиями углеводородных фрагментов, в результате чего молекулы липидов, белков и других соединений могут образовывать в водной цитоплазме олигомерные агрегаты и мембраны. Вместе с тем наиболее активные катализаторы, т. е. большинство ферментов, растворимы в воде. Таким образом, мембраны представляют собой сравнительно стабильные тонкие пленки, примыкаю щие к водным участкам клетки, в которых легко протекают химические реакции и которые содержат полярные молекулы, растворимые в воде. [c.355]


    Несомненно, что вода играет существенную роль в стабилизации структуры молекул белков, но взаимодействие ее с молекулами белка в растворе и распределение ее молекул в пространственном окружении белка все еще точно не установлены. Некоторые считают, что молекулы гидратной воды находятся в виде одного слоя вокруг ионизированных и полярных групп, тогда как неполярные участки боковых цепей оста- [c.185]

    Гидрофобные взаимодействия, являющиеся по своей природе энтропийным эффектом, не приводят к возникновению каких-либо новых, дополнительных сил, и поэтому выражение "гидрофобные силы" лишено физического смысла. Такие взаимодействия возникают из-за водного окружения молекулы белка и из-за специфической структуры воды. Для полярных и неполярных групп белка гидрофобные взаимодействия играют ориентирующую роль следствием их является образование наиболее предпочтительных внутри- и межмолекулярных контактов между родственными по своей природе группами. Сами же контакты и их эффективности описываются обычными ван-дер-ва-альсовыми взаимодействиями, электростатикой и водородными связями с учетом влияния среды. Водное окружение может способствовать образованию ионных пар или солевых связей, так как при этом освобождается часть ориентированных молекул воды, окружавших заряженные группы, и, следовательно, увеличивается энтропия воды. Показано [4], что в ряде случаев выигрыш энтропии оказывается более значителен, чем ослабление энергии кулоновских взаимодействий зарядов в водном окружении. При добавлении неводных растворителей солевые связи в отличие от гидрофобных взаимодействий усиливаются. [c.242]

    Хотя неполярные алифатические и ароматические аминокислоты вносят свой вклад в формирование пространственной структуры белков, участвуя главным образом во внутренних гидрофобных взаимодействиях, некоторые R-группы этих остатков располагаются вблизи поверхности глобулы и могут быть обнаружены с помощью специфических реагентов. Например, некоторые остатки тирозина, находящиеся на поверхности белка, нормально взаимодействуют с различными реагентами на фенольную группу, тогда как другие находятся в гидрофобном окружении внутри молекулы и потому нереакционноспособны. Вероятность гидратации гидрофобных остатков мала, и потому они могут находиться в поверхностных районах глобулы белка только благодаря стабилизации этих районов сольватированными полярными и ионными группами, расположенными в их непосредственном окружении. [c.108]

    Все высокомолекулярные электролиты растворяются в полярных растворителях,.так как макромолекулы с ионогенными группами взаимодействуют с полярными жидкостями сильнее, чем с неполярными. Именно вследствие значительного взаимодействия высокомолекулярных, электролитов (белков) со средой (водой) высокомолекулярные вещества одно время называли лиофильными коллоидами. [c.469]

    Электростатические силы играют очень важную роль во взаимодействиях между молекулами и часто являются причиной изменения их конформации например, притяжение между группами —СОО и —ЫНз весьма существенно для взаимодействий между молекулами белка. С карбоксильными группами белков и углеводов в растворе часто взаимодействуют ионы кальция, что иногда приводит к переходу растворов этих веществ в гелеобразное состояние (примером может служить агароза, гл. 2, разд. В.5). Катион Са , обладающий двойным зарядом, может играть роль мостика , соединяющего две карбоксильные или иные полярные группы. [c.245]

    Фактором, благоприятствующим гидрофобным взаимодействиям, является изменение энтропии, точнее говоря, ее прирост. В случае глобулярных белков полярные и прежде всего почти все ионные группы находятся на поверхности, чем облегчается гидратащ1я молекулы белка, имеющая большое значение для стабилизации пространственной структуры. У некоторых белков удаление воды неизбежно связано с их денатурацией. Большая часть неполярных остатков, напротив, находится внутри молекулы белка. Они укладываются плотно один к другому и практически выдавливают воду из первоначально еще непрочной клубковой структуры полипептидной цепи, что приводит к компактности и стабильности гидрофобного ядра. Само собой разумеется, что часть функциональных (ионных) групп боковых цепей находится внутри молекулы белка. Группы, оказавшиеся замаскированными, не подвергаются внешним воздействиям (изменение pH, реакции модификации и др.). Более того, измененная реакционноспособность таких функциональных групп, имеющая значение для каталического действия ферментов, определяется гидрофобным окружением и взаимодействием с [c.382]

    Механизмы действия усилителей могут быть связаны с коэффициентами их распределения в смеси октанол-вода. Наиболее полярные усилители (например, ДМСО, ДМФА, пирролидоны) распределяются при низких концентрациях преимущественно в белковой области СК. При высоких концентрациях они взаимодействуют с липидами СК, повышая их текучесть. Такой механизм подчеркивает важность ослабления липидного барьера, т.к. эти усилители эффективны только при высоких концентрациях. Неполярные вещества, такие как олеиновая кислота, вероятно, внедряются только в липидные области, где они разрушают структуру. Диметилсульфоксид с промежуточной полярностью взаимодействует как с белками, так и с липидами. Пропиленгликоль, полярное вещество, внедряется преимущественно в кератиновую область, но не оказывает большого влияния на текучесть липидов. Вероятно, его водородевязывающая способность недостаточна для значительного взаимодействия с липидными полярными головными группами. [c.355]


    Мысль о том, что с мембранами связаны белки, высказал впервые Дж. Даниелли в 1935 г. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границе раздела масло — вода и мембрана — вода. Хотя в то время какая-либо информация о мембранных белках отсутствовала, Дж. Даниелли и X. Давсон в том же 1935 г. выдвинули гипотезу об общем принципе структурной организации клеточных мембран, в соответствии с которым мембрана представляется как трехслойная структура (рис. 312) —своеобразный сэндвич, где двойной слой ориентированных одинаковым образом липидных молекул заключен между двумя слоями глобулярного белка, формирующего границу мембраны с водой. Предполагалось, что в этой структуре саязывание липидов с белками осуществляется за счет полярных взаимодействий. Поскольку толщина мембраны в то время не была известна, считалось, что пространство между двумя липидными монослоями может быть заполнено липоидным, жироподобным материалом. [c.581]

    Триста молекул воды — это весьма небольшое количество для покрытия поверхности лизоцима, которая составляет около 6000 [17, 23]. Средняя величина поверхности одной грани куба, эквивалентного по объему одной молекуле воды, равна 10 Д2. В работе [10] отмечено расхождение между примерно 600 молекулами воды, которые предсказываются на этой основе, и величиной в 300 или менее молекул воды, определенной экспериментально при исследовании процесса гидратации. Однако существуют ассоциаты молекул воды, в которых на одну молекулу приходится поверхность 20 А , например плоскости молекул воды, перпендикулярные с-оси льда I. Следует подчеркнуть, что данные по степени гидратации, оцененной из значений теплоемкости, указывают на то, что для получения величины поверхности в расчете на одну молекулу воды, большей, чем у объемной воды, надо постулировать локальное упорядочение воды вoJipyг молекул белка вследствие взаимодействия с атомами последнего. Тогда средняя величина поверхности в расчёте на одну полярную группу или на один заряженный атом на поверхности белка составит около 20 А . Кроме того, многослойная адсорбция воды, по-видимому, не обнаруживается при измерениях теплоемкости. Следовательно, белок с многослойной оболочкой из воды может быть достаточно проницаем по отношению к растворителю, находящемуся в объеме. [c.122]

    До последнего времени изучение аналогов биомембран проводилось в основном на липидных или липопротеидных пленках, получаемых на поверхности раздела жидких фаз или на границе вода — воздух. Такие пленки передают приближенно простейшие электрофизические и геометрические свойства биомембран, но при моделировании химических и структурных свойств биомембран они имеют довольно ограниченную область применения. Это связано с тем, что такие пленки отвечают только одному из нескольких возможных структурных типов мицелл, когда в монослое или бимолекулярном слое липида полярные группы молекул обращены в сторону водной фазы. Кроме того, в подобных системах с очень низкой удельной поверхностью можно изучать только белковые монослои на липидах. Полученные в последнее время данные показывают, что невозможность варьировать степень заполнения белком полярности пленки существенно ограничивает и даже искажает данные о роли межбелковых взаимодействий в биомембранных системах. Поэтому указанный метод моделирования биомембран не только не универсален, но и не всегда корректен. [c.283]

    Оценивая роль различных взаимодействий в стабилизации глобулярных бел-ков, следует считать, что характер нативной конформации определяется не каким-либо одним эффектом, а представляет собой результат совместного тонко сбалансированного действия целого ряда энергетических и энтропийных факторов. Водородные связи, образованные между полярными группами и водой и внутри глобулы, — главный фактор в обеспечении стабильности отдельных областей молекулы белка. Они ограничивают локальные конформационные изменения внутри белка, определяя жесткость конструкции и общий характер потенциальных барьеров для внутренних движений частей нативной структуры. В то же время гидрофобные взаимодействия между боковыми группами на отдельных участках основной цепи играют решаюшую роль в процессах сворачивания глобулы из первичной аминокислотной последовательности и в определении ее общей формы. В обоих случаях вода как растворитель имеет огромное значение, облегчая полярные взаимодействия за счет образования водородных связей как на поверхности, так и внутри макромолекулы белка.  [c.234]

    Некоторые мембранные белки удается выделить методами мягкой обработки, например экстрагированием раствором высокой ионной силы (например, 1 М 1ЧаС1). Другие белки оказываются более прочно связанными с мембраной - их можно отделить лишь с помощью детергента (рис. 10.17) или органического растворителя. Исходя из различий в прочности связи с мембраной, соответствующие белки подразделяют на периферические и интегральные (рис. 10.18). Интегральные белки образуют многочисленные связи с углеводородными цепями мембранных липидов, и потому их можно вьщелить только с помощью агентов, конкурентно участвующих в этих неполярных взаимодействиях. Периферические белки, напротив, связаны с мембранами электростатическими силами и водородными связями. Эти полярные взаимодействия могут быть разрушены при добавлении солей или [c.210]

    Для получения растворов молекулярных коллоидов достаточно привести сухое вещество в контакт с подходящим растворителем. Менолярные макромолекулы растворяются в углеводородах (например, каучуки — в бензоле), а полярные макромолекулы — в полярных растворителях (например, некоторые белки — в воде и водных растворах солей). Вещества этого типа назвали обратимыми коллоидами потому, что после выпаривания их растворов и добавления новой порции растворителя сухой остаток вновь переходит в раствор. Название лиофильные коллоиды возникло из предположения (как оказалось, — ошибочного), что сильное взаимодействие со средой обусловливает их отличие от лиофобных коллоидов. [c.314]

    Ферменты — высокомолекулярные белковые соединения, состоящие из аминокислот, связанных пептидными связями. В составе природных белков встречается около двадцати аминокислот. Молекулярная масса ферментов лежит в пределах от 10 до 10 . Молекула фермента в своем составе имеет чередующиеся полярные группы СООН, ННа, МН, ОН, 5Н и другие, а также гидрофобные группы. Первичная структура фермента обуславливается порядком чередования различных аминокислот. В результате теплового хаотического движения макромолекула фермента изгибается, свертывается в рыхлые клубки. Между отдельными участками полипептидной цепи возникает межмолекулярное взаимодействие, приводящее к образованию водородных связей другие участки могут взаимодействовать за счет электростатических или ван-дер-ваальсовых сил  [c.632]

    Микросреда поверхностного слоя обнаруживает также сильно пониженную полярность по сравнению с водой. На это указывают, в частности, результаты сравнения УФ- и видимых спектров поглощения или спектров флуоресценции ароматических соединений в воде, в органическом растворителе и при солюбилизации их в поверхностном слое белковой глобулы [23, 24]. Полярность среды, окружающей молекулу Ы-арилсульфоната в комплексе с белком, близка й значению, характеризующему этанол (Z = 80 для воды Z = 95) (табл. 4). В тех участках ферментной глобулы, где непосредственно происходит гидрофобное взаимодействие аполярных аминокислотных остатков поли-пептидной цепи, полярность микросреды должна быть еще более низкой. С другой стороны, в рядом расположенных областях поверхност- ного слоя следует ожидать высокую локальную концентрацию диполей пептидных связей. Это (даже в отсутствие полярных и заряженных боковых групп) может привести к образованию участков высокополярной и поляризующей мик- 57 росреды (где напряженность поля достигает значений 10— [c.21]

    По мере расшифровки структуры различных белков (особенно в последние годы) становилось все более очевидным, что глобулярные белки, как и миоглобин, сохраняют свою структуру преимущественно благодаря взаимодействию между гидрофобными остатками. Внутри молекулы белка боковые группы уложены исключительно компактно. Если где-нибудь в структуре остается свободное пространство, оно обычно заполняется водой [24, 25]. Например, плотность упаковки (отношение объема, ограниченного вандерваальсовой оболочкой, к полному объему) молекул лизоцима и рибонуклеазы составляет 0,75 для сравнения укажем, что для плотно упакованных сфер теоретическое значение плотности упаковки равно 0,74. Полярные группы обычно находятся на поверхности, но иногда бывают утоплены внутрь, образуя водородные связи с другими группами внутри молекулы белка. На отдельных участках поверхности встречаются и неполярные боковые цепи, которые в ряде случаев сгруппированы в гидрофобные кластеры. Последние могут обусловливать взаимодействие с другими белками или с липидными участками мембран. [c.96]

    Вклад гидрофобного взаимодействия в свободную энергию сорбции органической молекулы на ферменте можно оценить теоретически [261. Однако более плодотворными для оценки прочности гидрофобной связи оказались некоторые эмпирические критерии. В их основу положено представление, что образование комплекса белок — органический лиганд, возникаюш,его в результате гидрофобных взаимодействий, можно рассматривать фактически как термодинамически выгодный перенос аполярной молекулы (или ее фрагмента) из воды в органическую фазу беЛка. Величина поверхности связываемой молекулы [40, 41] — это весьма частный критерий, поскольку на его основании нельзя сравнивать комплексующие свойства соединений, содержащих в молекуле различного рода полярные заместители. Недостаточным критерием гидрофобности ингибиторов или субстратов следует считать также и растворимость их в воде. Использование этой величи- [c.26]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    Сухие остатки некоторых коллоидных растворов (полученные при осторожном выпаривании) способны вновь образовывать золь при добавлении соответствующего растворителя (дисперсионной среды), т. е. эти коллоидные системы обратимы. Сухие остатки коллоидных растворов, не образующих золь при добавлении дисперсионной среды, называются необратимыми коллоидными системами. Поскольку у обратимых систем дисперсная фаза взаимодействует с жидкой дисперсионной средой и может в ней растворяться, т. е. обладает сродством к ней, Фрейндлих и предложил называть их лиофильными системами. К ним относятся растворы высокомолекулярных соединений белки, нуклеиновые кислоты и т. п. У необратимых систем дисперсная фаза не взаимодействует с дисперсионной средой и, следовательно, не растворяется в ней. Их назвали лиофобными системами. К ним относятся типичные коллоидные растворы золи гидроокиси железа, сернокислого бария и т. п. Если дисперсионной средой служит вода, то системы называются соответственно гидрофильными или гидрофобными. Гидрофильность обусловлена присутствием в молекулах достаточно большого числа гидрофильных групп, которыми могут быть или диссоциированные (ионогенные) R—СООН, R—NH3OH, R— OONa, R—NH3 I, или недиссоциированные (полярные) [c.173]

    Пасынский, Бреслер, Талмуд, Афанасьев и другие), макромолекула белка в водном растворе свернута в той или иной степени в глобулу—полярными группами и полипептидной цепью наружу, а неполярными — преимущественно внутрь глобулы. Такая молекула является как бы элементарным микрорецептором, отвечающим вариацией формы на воздействие со стороны среды. Действительно, изменения состава, pH и других факторов изменяют взаимодействие со средой на отдельных участках, а следовательно, и форму макромолекулы. [c.110]

    Согласно представлениям глобулярной теории белков, развитой главным образом трудами советских исследователей (Пасынский, Бреслер, Талмуд, Афанасьев и другие), макромолекула белка в водном растворе свернута в тон или иной степени в глобулу- полярными группами и полипептидной цепью наружу, а неполярными — преимуществеипо внутрь глобулы. Такая молекула является как бы элементарным микрорецептором, отвечающим вариацией формы на воздействие со стороны среды. Действительно, изменения состава, pH и других факторов изменяют взаимодействие со средой на отдельных участках и, следовательно, форму макромолекулы. [c.102]

    После гипотезы Даниэлли и Дэвсона предложены разнообразные модели строения биомембран. Развитие представлений о строении биомембран изложено в ряде обзоров (см., например, [227, 228]). Наибольшую популярность в настоящее время получила мозаичная модель биологической мембраны [229], согласно которой функциональные белки погружены и диффундируют в жидкообразном липидном бислое. Белок погружен в бислой таким образом, что полярные и ионизованные группы взаимодействуют с водой, а гидрофобные части — с углеводородными цепями липидов. [c.167]

    Поскольку парциальные заряды на полярных атомах боковых групп (лизина, аргинина, глутаминовой и аспарагиновой кислот)обычно в несколоко раз выше, чем для атомов основной цепи [101, то электростатические контакты между ними должны давать значительный вклад в стабилизацию белковой конформации. Исследование атом-атомных взаимодействий в -спиральных белках с известной пространственноЛ структурой позволяет сделать вывод о значительном количестве (9 ) электростатических контактов внутри структуры белка. Вклад одного гидрофобного контакта дает выигрыш энергии л/ o.s ккал/моль, а одного электростатического до 4 ккал/моль. В связи с этим проведенный адализ подтверждает необходимость учета этого типа взаимодействий при расчете энергии определенных конформаций белка. [c.141]

    Иная ситуация имеет место при проведении эксклюзионной хроматографии в водных средах. Из-за специфических особенностей многих разделяемых систем (белки, ферменты, полиэлектролиты и др.) и разнообразия применяемых сорбентов существует очень много вариаций состава подвижной фазы для подавления различных нежелательных эффектов [34, 35]. Общими приемами модификации является добавка различных солей и применение буферных растворов с определенным значением pH. В частности, поддержание рН=<4 дает возможность подавить слабую ионообменную активность силикагелей, обусловленную присутствием на их поверхности кислых силанольных групп. Требуемая ионная сила подвижной фазы достигается при концентрации буферного раствора 0,05-0,6 М оптимальную концентрацию подбирают экспериментально. Для предотвращения ионообменной сорбции катионных соединений наиболее часто используют такой активный модификатор, как тетраметиламмонийфосфат при рН=3. Однако при разделении некоторых белков могут проявляться гидрофобные взаимодействия, в свою очередь осложняющие эксклюзионный механизм разделения. Те же эффекты иногда проявляются и при работе с дезактивированными гидрофильными сорбентами. Для их устранения к растворителю добавляют метанол. Иногда в водную подвижную фазу вводят полярные органические растворители, полигликоли, кислоты, основания и поверхностно-активные вещества. [c.48]

    Биол. макромолекулы (белки, нуклеиновые к-ты) и их модели (полипептиды, полинуклеотиды) в р-рах могут иметь специфич. конформации, стабилизированные внутримол. взаимодействием. Так, нативные глобулярные конформации белков в водном р-ригеле стабилизированы водородными связями и гидрофобными взаимодействиями неполярных групп атомов. Полярные группы на пов-сти глобулы обеспечивают ее р-римость. При изменении состава и св-в р-рителя, pH и ионной силы р-ра или при изменении т-ры происходят виутримол. конформац. переходы типа спираль-клубок и глобула-клубок, что приводит к резкому изменению всех св-в Р. п. [c.190]

    Молекулы воды образуют водородные связи не только друг с другом, но н с полярными группами растворенных соединений. В го же время любая группа, способная образовывать водородные связи с другой группой, может образовать водородные связи примерно такой же прочности и с молекулами воды. Именно поэтому водородные свяэи далеко не всегда способствуют ассоциации малых молекул в водных растворах. Если в неполярном растворителе какие-либо полярные молекулы прочно связываются друг с другом за счет водородных связей, это отнюдь не означает, что они будут ассоциировать и в воде. Что же в таком случае позволяет биохимикам утверждать, что водородные связи играют огромную роль в формировании структуры макромолекул и при взаимодействии биологически важных соединений Дело в том, что равновесие между состояниями, при которых пары взаимодействующих молекул в воде связаны друг с другом водородными связями или диссоциированы, легко смеш,ается в ту или другую сторону. Так, например, белки и нуклеиновые кислоты могут образовывать компактные структуры за счет внутримолекулярных водородных связей между определенными группами или же денатурировать вследствие образования водородных связей между данными группами и молекулами воды, причем разница в свободных энергиях этих двух состояний сравнительно невелика. [c.247]

    Хорошо известно, что ионы кальция поступают в цитоплазму в ответ на нервную стимуляцию и что именно они вызывают различные ответные реакции в организме, такие, например, как мышечное сокращение. Весьма вероятно, что в результате присоединения ионов Са- к специфическим центрам связывания (как это имеет место, например, в каль-ций-связывающем белке карпа) в молекуле происходят конформационные изменения, инициирующие биологические ответные реакции. Кальций-связывающий белок содержит интересную систему внутренних полярных групп, связанных между собой специфическим образом с помощью водородных связей (рис. 4-5, ). Присоединение ионов кальция может вызывать перестройку этих внутренних связей (гл. 2, разд. Б.7) и изменять тем самым характер взаимодействия этого белка (функция которого точно не известна) с другим белком (ср., например, с действием тропонина С, разд. Е.1). В других кальций-связывающих центрах в белках содержатся остатки у-карбоксиглутаминовой кислоты, способной образовывать хелатные комплексы (дополнение 10-Г). [c.270]


Смотреть страницы где упоминается термин Белки полярные взаимодействия: [c.753]    [c.491]    [c.161]    [c.71]    [c.58]    [c.62]    [c.45]    [c.271]    [c.318]    [c.433]    [c.193]    [c.312]    [c.330]    [c.114]    [c.85]    [c.273]   
Основы биологической химии (1970) -- [ c.111 , c.112 ]




ПОИСК







© 2024 chem21.info Реклама на сайте