Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Электрод Мембранный электрод, селективный

    Типы ионоселективных электродов. Стеклянный электрод по структуре занимает промежуточное положение между жидкими и твердыми мембранами. Стеклянные электроды были первыми ионоселективными устройствами, над которыми в течение последних тридцати пет ведутся интенсивные исследования с целью создания новых практически ценных сортов стекла в качестве электродного материала. Было разработано большое число разного состава стекол, обладающих водородной функцией, несколько стекол с натриевой функцией, а также селективных к таким ионам, как К, Tit s , Стекла для [c.49]


    Мембранные электроды. Если между двумя растворами, содержащими разные катионы или различные концентрации одного катиона, поместить мембраны, проницаемые для катионов и непроницаемые для анионов, то в таких мембранах возникает потенциал. Были сделаны попытки использовать селективные мембранные электроды для измерения активностей ионов металлов, особенно металлов главных подгрупп 1-й и 2-й групп, металлические или амальгамные электроды которых разлагаются водой и нет возможности найти подходящую окислительно-восстановительную систему. Большое число таких электродов рассматривается в работах [85, 204]. Первые исследования проводились с коллодием или гидратированными цеолитами, но позднее начали изготовлять мембраны из синтетических ионообменных смол, содержащих карбоновые, фосфоно-вые [158] или сульфогруппы, либо из стеарата бария [86], окиси графита [58] и неорганических осадков в парафиновом воске [80]. Ионы щелочных металлов, также как и протоны, были изучены с помощью стеклянного мембранного электрода. Потенциал мембраны обычно измеряется косвенным путем с помощью элементов типа [c.165]

    Основная проблема, возникающая при использовании мембранных электродов в качестве индикаторных, — их избирательность (селективность). В идеальном случае электродная функция зависит только от ионов Ме " . Однако подобрать такую мембрану, через которую проходят только эти ионы, почти невозможно. Как правило, через мембрану проходят (и поэтому влияют на потенциал) также другие ионы. Селективность электрода принято количественно оценивать с помощью коэффициента селективности. Для этого зависимость потенциала от находящихся в растворе ионов показывают так  [c.265]

    В настоящее время выпускаются нитрат-, тетрафторборат-, перхлорат-селективные электроды с пластифицированными мембранами, которые позволяют измерять концентрацию соответствующих ионов в диапазоне от 1 до 10 моль/л при температурах от О до 40 °С. Разработаны также электроды для определения Са ", На", К". Так, например, поливинилхлоридная матрица, пластифицированная трибутилфосфатом, селективна к ионам Са ". Та же мембрана, пластифицированная дибутилфосфатом, реагирует на изменение концентрации ионов К" в присутствии На". Следует помнить, что в основе действия всех этих мембран лежат те же принципы, что и рассмотренные выше. Необходимым условием отклика мембраны является равновесие реакции определяемого иона с комплексообразующим реагентом или с ионообменником. [c.209]


    Для модифицирования электродов применяют также гидрофобные вещества. Среди них особый интерес вызывают липидные мембраны. Электроды, модифицированные липидными мембранами, дают селективный отклик только на присутствие гидрофобных веществ, содержащих электроактивные группы. Гидрофильные вещества не проникают через такие мембраны и не концентрируются на электроде. [c.494]

    В последнее время, как уже отмечалось (см. стр. 87), получили распространение селективные мембранные электроды. Точность определения концентрации хлоридных и сульфатных ионов у них также невелика, к тому же они непригодны для непрерывной эксплуатации, так как требуют частой стандартизации. [c.115]

    Мембранные электроды можно использовать для измерения содержания растворенного кислорода без химической обработки пробы. Прибор для определения растворенного кислорода состоит из двух твердых металлических электродов, которые находятся в контакте с солевым раствором, отделенным от пробы воды селективной мембраной (рис. 2.17). Углубление, в которое входят металлические электроды, заполнено насыщенным раствором хлорида калия и отделено от остальной части полиэтиленовой или тефлоновой пленкой, удерживаемой резиновым кольцом. В приборе имеется также датчик для измерения температуры. Прибор, введенный в склянку (см. рис. 2.17), специально предназначен для измерения содержания растворенного кислорода без нарушения биологических процессов окисления этот же прибор может использоваться для исследования процесса потребления растворенного кислорода во времени между снятиями показаний колбу закрывают пробкой. Пробоотборник, используемый в полевых условиях, при измерении содержания раство- [c.42]

    В книге рассматриваются вопросы применения и твердых ион-селективных электродов, чувствительных к неорганическим анионам (СР, Вг , Р и др.) и жидких мембранных систем, позволяющих создавать электроды, селективные к большинству неорганических катионов и анионов, а также к ряду органических соединений. Постепенное расширение номенклатуры и повышение качества ион-селективных электродов позволяют применять их для экспресс-анализа и в контрольно-измерительной аппаратуре, например, при производстве некоторых органических соединений и лекарственных препаратов. На их основе создаются также высокопроизводительные автоматизированные системы клинического и биохимического анализа. [c.5]

    Некоторые свойства галогенидных мембранных электродов приведены в табл. У.И в табл. У. 12 представлены значения констант селективности, определенные различными методами (см. также табл. У.13). [c.139]

    В начале главы мы приводили сведения о гетерогенных твердых мембранных электродах с анионной функцией, которые не имеют существенного значения из-за отсутствия у них селективности, а также по другим причинам. Тем не менее изложим некоторые их свойства. [c.168]

    Так, описан [115] К -селективный электрод с мембраной на основе биологических материалов, потенциал которого зависит от активности ионов калия в растворе по уравнению Нернста. Другой электрод с константами селективности и Kk°-nh4 = 10 , обнаруживающий мгновенную реакцию на К% изготовлен на основе полимерного материала, содержащего макро-циклический антибиотик (точный состав не назван) [116]. Последний период ознаменовался энергичными разработками твердых мембран на основе соединений, связывающих в комплекс и переносящих ион калия через полимерную матрицу, в которой содержится комплексующий агент. Разработаны электроды с мембранами из силиконового каучука, содержащими валиномицин (см. его структуру в главе о жидких мембранах), с применением и без применения пластификатора оценены их селективность к иону калия, стабильность, воспроизводимость [117]. В табл. VII.7 приведены некоторые характеристики различных мембран, содержащих валиномицин. Селективность к К+ этих электродов по сравнению с селективностью к большинству ионов щелочных и щелочноземельных металлов [118] почти такая же (табл. VII.8), как у обычных электродов с жидкими мембранами (фильтр из милли-пора, пропитанный раствором валиномицина в дифениловом эфире) [119]. Для определения ионов щелочных металлов испытывали также электрод с мембраной из силиконового каучука, содержа-198 [c.198]

    Величина (мв/иа)АГо6м в этом выражении называется коэффициентом константой) селективности Кш) электрода по отношению к ионам А" и является основным параметром, характеризующим селективность мембранного электрода. Селективность электрода зависит также от соотношения активностей определяемых и мешающих ионов (а ав). Чем меньше Кш, тем более селективен электрод по отношению к определяемому иону. Если, например, коэффициент селективности составляет 10 , то чувстви- [c.175]


    Например, мембрана, насыщенная раствором быс-5-метилгеп-тилового эфира фосфорной кислоты [или вообще соединения типа (алкил-0) 2РООН] в н-деканоле, селективна по отношению к двухвалентным ионам. В присутствии ионов щелочных металлов (Л м, Na 0,01) значение константы селективности для ионов a(il), Mg(H), Sr(II) и Ba(II) равно примерно 10 [221]. Другие двухвалентные металлы мешают определению щелочноземельных металлов (/См, zn = 3,3 Км, u = 3,l). Этот электрод пригоден для прямого потенциометрического измерения жесткости воды, а также в качестве индикаторного электрода при хелонометрическом титровании (ср. табл. 4.7). Если такая же мембрана приготовлена с помощью диоктилового эфира фенилфосфорной кислоты в качестве растворителя, то константы селективности имеют следующие значения Кса, ыа = 0,001 и /Сса. n- -0,01 [222], где N обозначает остальные ионы щелочноземельных металлов, такие, как Ва, Sr и Mg. Как и в предыдущих случаях, измерению с помощью этой мембраны также мешают другие двухвалентные ионы. Существенным компонентом мембранного электрода, селективного по отношению к свинцу и меди, являются растворы алкилтиоуксусных кислот однако селективность таких электродов ниже, чем у электродов с твердыми мембранами [221]. [c.389]

    Применяются также жидкие мембранные электроды со сложным органическим катионом диметилдистеариламмонием. Данный электрод характеризуется следующими константами селективности  [c.88]

    В работе [50, с. 127] исследовано поведение пленочных мембранных электродов с Вг--функцией на основе десяти активных веществ, различающихся радикалами в четвертичном аммониевом основании, а также природой самого ониевого основания, с целью выяснения влияния ионообменника на нижний предел функционирования электрода и его селективность. Мембраны исследуемых электродов изготовляли в виде полимерной пленки, пластифицированной диоктилфталатом, в котором растворено ионообменное вещество. Показано, что нижний концентрационный предел функционирования электродов с Вг -функцией определяется растворимостью ионообменника в воде. По этой причине соли более высокомолекулярных аммониевых оснований (Сю и выше) предпочтительнее в качестве исходных веществ для получения мембранных Вг -электродов с широкими концентрационными пределами функционирования и селективностью (табл. II. 1). [c.57]

    Необходимо сказать несколько слов о терминологии ионометрии. В соответствии с рекомендациями ИЮПАК [37] (см. также наше предисловие к [14]) и сложившейся практикой при переводе использовались термины ионоселективный электрод , предед обнаружения , коэффициент селективности и т. д. В названиях электродов, для которых потенциалопределяющий и аналитически определяемый ионы совпадают, первая часть названия обозначает потенциалопределяюнхий ион, например медьселективный или фторидселективный электрод (как синоним в последнем случае используется также термин фторид-ный электрод ). Для сложных электродов , представляющих собой устройства с ионоселективным электродом для определения газообразных соединений или для химического преобразования определяемого соединения путем катализируемой ферментом реакции в потенциалопределяющий ион, сохранены соответственно названия газовых и ферментных электродов. Сохранены также термины твердофазный электрод — электрод с твердой мембраной, жидкостной электрод — электрод с жидкой мембраной, пластифицированный электрод — электрод с жидкой мембраной, заключенной в полимерную матрицу, электроды с твердым токоотводом, т. е. электроды без внутреннего раствора и электрода сравнения. [c.8]

    Ионитовые мембраны применяют также для изготовления селективных мембранных электродов, используемых в потенциометрическом анализе. Мембранный электрод представляет собой трубку, в один конец которой вклеена мембранная пленка. Трубку заполняют раствором электролита, ионами которого заряжена ионитовая пленка. Если такой электрод погрузить в раствор, содержащий такие же ионы, то на ионитовой мембране возникает концентрационный потенциал, величина которого зависит от разности концентраций ионов по обе стороны мембранной пленки. Так, потенциал катионитового электрода, заряженного ионами бария и содержащего раствор соли бария, зависит от концентрации (активности) ионов Ba + во внешнем растворе. После калибровки такой электрод пригоден для потенциометрического определения концентрации ионов бария. Основным недостатком мембранных электродов, что ограничивает их применение в анализе, является искажение их потенциала другими нонами, присутствующими в растворе и вытесняющими из ионитовой пленки определяемые ионы. [c.206]

    Последние — зто электрохимические системы, в которых потенциал определяется процессами распределения ионов между мембраной и раствором. При этом распределяются преимущественно ионы одинакового знака заряда. Поэтому мембрана имеет ионную проводимость. До середины 60-х гг. основными ИСЭ были стеклянные, а также электроды на основе твердых ионитов с фиксированными группами (смоляные, из минералов, глин и др.). В 60—70-х гг. созданы десятки новых ИСЭ на основе жидких и твердых ионитов, моно-и поликристаллов, мембраноактивных комплексонов (МАК), элементоорганических соединений. Получили широкое применение электроды с четко выраженной селективностью к ионам К , Na ", ТГ, NH , Са Ва % I( a= + Mg 0, d Pb u= Ag F . СГ. Вг, Г. [c.519]

    Наряду с рассмотренными мембранными электродами серьезного внимания заслуживают и другие электроды на основе соединений серебра, например цианид-селективный электрод. При контакте мембраны этого электрода с раствором, содержащим цианид-ионы, на границе мембрана/раствор возникает разность потенциалов, величина которой зависит от активности цианид-ионов. Определению не мешают Си ", Fe ", МПО4 , а также хлорид- и бро- [c.199]

    Для огфеделения тиоцианат-ионов применяют тиоцианат-селективный электрод, мембрану которого изготавливают из смеси тиоцианата и сульфида серебра. Данный электрод чувствителен к тиоцианат-ионам в диапазоне концентраций 5-10 - 1,0 моль/л в интервале pH от 2 до 10. Анализируемый раствор не должен содержать сильных восстановителей и анионов, образующих с серебром малорастворимые соли, а также Hg ". Во всех указанных случаях электрод выходит из строя из-за отравления мембраны. [c.200]

    Другой тип селективности по зарядам реализуется при покрытии электродов анионообменными мембранами. Например, поли-(4-винилпиридин) применяется для модифицирования электродов при определении анионов. С разделением по зарядам можно сочетать также разделение по размерам, используя двойное покрытие -пленку ацетилцеллюлозы поверх слоя анионообменной или катионообменной мембраны. Применение многослойных мембран повышает селективность отклика. В табл. 13.3 приведены данные о мембранах, применяемых для модифицирования электродов. [c.494]

    Для измерения pH воды широко применяются как лабораторные, так и промышленные рН-метры со стеклянными электродами (см. п. 9.14.5.1). В отдельных случаях могут использоваться металлаоксидные электроды, например сурьмяный, молибденовый и др. Имеются также стеклянные электроды для определения содержания в растворе натрия и калия обычно концентрацию их определяют на пламенном фотометре. Изготовляются электроды с ион-селективными мембранами для определения в воде фтора, хлора, брома, иода, сульфидов, сульфатов. Разработаны также электродные системы для измерения концентрации ионов кальция, магния, нитратов и др. Следует, однако, отметить, что с помощью электродов определяется лишь активная концентрация ионов (см. п. 2,14.4). [c.181]

    Твердые электроды, чувствительные к кадмию, меди и свинцу, изготавливают из смешанных кристаллических мембран, состоящих из сульфида серебра, к которому добавлены соответственно dS, uS или PbS. Электроды, селективные к тиоцианату, хлориду, бромиду и иоди-ду, получаются, если сульфид серебра, содержащий тонкоизмельченные хорошо диспергированные AgS N, Ag l, AgBr или Agi, спрессован в форме диска или шарика и вставлен в донышке стеклянной трубки, как показано на рис. 11-8. Смесь иодида и сульфида серебра используется для изготовления твердого мембранного электрода, который подходит для измерения цианид-иона. Индивидуальный поликри-сталлический сульфид серебра, спрессованный обычным методом в шарик, может служить для приготовления твердого электрода, который чувствителен как к сульфид-иону, так и к иону серебра. Кроме того, он является важным индикаторным электродом Для потенциометрических титрований смесей галогенидов или цианида стандартным раствором нитрата серебра. Некоторые аналитические применения твердых электродов, а также мешающие вещества приведены в табл. 11-4. [c.386]

    Кинетические параметры в этих уравнениях также различаются, поскольку они относятся к разным процессам переноса. Вероятно, селективность мембран с вакансионным механизлюм переноса зарядов выше, чем при сольватационном. В жидких мембранах с сильной ассоциацией и полимеризацией, ведущей к образованию коллоидных агрегатов и мицелл, более вероятен вакансионный механизм перенсса, при котором осуществляется перескок свободного иона от одного агрегата к другому, т. е. электрическая эстафетная цепь. Селективность электродов данного типа должна определяться в основном природой ионообменника или хелата и, следовательно, не будет сильно зависеть от природы растворителя. [c.458]

    В последнее время были гюлучены электроды, селективные к Си-+, d-+ и РЬ - , из с льфидов этих металлов в силиконовом каучуке. Для твердых rereporeii-ных мембран в качестве ионита применяют также ионообменные смолы. Например, созданы электроды, достаточно селективные на ионы Са" и К это.му же т1 пу [c.462]

    Показано, что перхлоратный ион-селективный электрод на жидком ионообменнике типа 92—81 (Орион) чувствителен также к роданиду и перренату, что позволяет проводить потенциометрическое титрование роданида растворами Ag+ и Hg + [47]. Описан поли-кристаллический мембранный электрод для определения роданида [48], представляющий собой смесь тонкоизмельченных порошков AgS и AgS N, спрессованных в виде диска. Аналитические характеристики электрода, полученного смешением AgS N с термопластическим полимером, изучены в работе [49]. Электрод чувствителен к серебру (I) и роданиду. В интервале концентраций 10 мкМ — 0,1 М при pH == 1 — 13 потенциал электрода изменяется на 59 мВ при увеличении концентрации ионов в 10 раз. В неводных растворах потенциал электрода изменяется в соответствии с уравнением Нернста в интервале концентраций 0,1 мкУИ — 0,1 М. [c.230]

    Основная характеристика любого ион-селективного мембранного электрода — однозначная и воспроизводимая зависимость мембранного потенциала от активности химических компоненюв, относительно которых данный злектрод селективен. Кроме того, мембранный электрод должен иметь хорошую селективность и по возможности малое время отклика. Он должен быть долговечен, прост в употреблении, прочен и доступен. Желательно, хотя и не обязательно, чтобы кривая зависимости э. д. с. — логарифм активности описывалась уравнением Нернста. Можно также дать некоторые рекомендации относительно мембраны электрода. Мембрана гомогенных твердых электродов должна быть беспористой, механически прочной. Ее изготовляют либо из кристалла, либо получают прессованием порошка и плотао устанавливают в корпус электрода. Гомогенная мембрана должна быть практически нерастворима в воде чем меньше произведение растворимости материала мембраны, тем более он подходит для нее, особенно в отношении селективности. [c.32]

    Мембрану на основе сульфида серебра для электродов изготавливают в основном из чистого сульфида серебра, иногда его смешивают с сульфидами других металлов используют также монокристаллы AgjS. Способ изготовления большинства из этих электродов заключается в том, что осадки сульфидов спекают или запрессовывают в керамическую пластинку или подходящий полимер. Такие электроды обратимы не только к Ag+, но к и некоторым другим ионам, причем Ag+- и 5 -функции оказываются теоретическими, если в растворе отсутствуют и N [146]. В обычных условиях лаборатории свет не влияет на электроды. Константы селективности, определенные для различных мембранных электродов с Ag S, приведены в табл. VII. 13. [c.206]

    Для измерений в неводных растворителях пригодны также и гомогенные ион-селективные электроды. Речниц и Кенни [142, 143] исследовали поведение РЬ -селективного мембранного электрода (Орион 94-82) в метаноле, диметилсульфоксиде, 1,4-диоксане и ацетонитриле. Для того чтобы исключить при измерениях диффузионный потенциал на границе вода — неводный растворитель, который образуется при использовании электрода сравнения с водным электролитом, в качестве электрода сравнения был взят стеклянный катионообменный электрод (Бекман № 39047), т. е. измерения проводились методом дифференциальной потенциометрии. Твердая мембрана индикаторного электрода состоит из смеси PbS/Ag S. Электродная функция линейна и подчиняется уравнению Нернста в диапазоне концентраций РЬ от 10 до 10 г-ион/л в 20%-ном водном растворе метанола и примерно от 2-10 до 10 г-ион/л (с более крутым наклоном) в 50%-ном водном растворе метанола. Аналогичные результаты получены в смесях диметилсульфоксид — вода. [c.48]

    Лайт и Маннион [191] проанализировали различные фторированные органические соединения (1—3 мг фтора в пробе) с помощью фторид-селективного мембранного электрода (Орион 94-09), используя в качестве титранта 0,005 М раствор нитрата тория в 80%-ном (по объему) этаноле. Жидкие пробы взвешивали в метилцеллюлозной капсуле. Если разложение веществ проводилось в сосуде из боросиликатного стекла, полученные результаты анализа были на 5 — 25% ниже теоретического значения. Это объясняется как реакцией фтора со стеклом, так и неполным сгоранием пробы. Даже при добавлении додеканола в качестве вспомогательного вещества длу лучшего сгорания результаты получаются ниже расчетных (до 13%), причем ошибка растет с увеличением содержания фтора. Если сжигание проводилось в сосуде из поликарбоната, но без вспомогательного вещества, то полученные результаты также были занижены, правда только на 3%. [c.68]

    Продукты реакции, Ag2S и AgjN — sN, были выделены из раствора, а их состав был подтвержден методом ИК-спектроскопии и элементным органическим анализом. Тиомочевина определялась также прямой потенциометрией с -селективным мембранным электродом. Кривая зависимости Е — log С омочевина линейна в области концентраций 10" -10" моль/л в присутствии 1 или 0,1 и. гидроксида натрия, а ее наклон равен 50 и 30 мВ/декада соответственно. [c.108]

    Твердые ионоселективные электроды. В твердых мембранных электродах ионочувствительный элемент изготовляется из малорастворимого кристаллического вещества с ионным характером проводимости. Перенос заряда в таком кристалле происходит за счет дефектов кристаллической рещетки.. Вакансии могут заниматься ионом только определенного размера и заряда, что обусловливает высокую селективность кристаллических мембран. Конструктивно такие электроды сходны со стеклянными в обоих электродах мембрана разделяет исследуемый раствор и раствор сравнения, в котором находится электрод сравнения (обычно хлорсеребряный). Из электродов этого типа щироко применяется фторидный электрод, в котором мембраной является монокристалл ЬаРз, имеющий чисто фторидную проводимость, с добавкой Еир2 для увеличения электрической проводимости. Чувствительность фторидного электрода позволяет проводить измерения равновесной концентрации фторид-ионов Р в широкой области концентраций от 10" до 1 моль/л. В этой области отклонений от уравнения Нернста не наблюдается. Селективность электрода очень высока — даже тысячекратный избыток посторонних ионов (галоге-НИД-, нитрат-, сульфат-ионов и др.) по сравнению с фторид-ионом не мешает определению и только в присутствии ОН-ионов селективность падает (ОН является мешающим ионом). Работа фторидного электрода ухудшается также в присутствии лигандов, образующих с ионом Ьа " прочные координационные соединения в растворе (цитрат-, оксалат-ионы и др.). Вполне понятно также, что с увеличением кислотности среды равновесная концентрация фторид-ионов Р в растворе уменьшается за счет образования молекул НР. Таким образом, показания фторидного электрода в кислой области будут существенно зависеть от pH. В щелочной области на поверхности электрода может образоваться осадок Ьа(ОН)з, что также вызовет искажение показаний электрода. Точные границы pH, в которых показания фторидного электрода от pH зависят несущественно, привести трудно, так как с уменьшением концентрации фторид-иона эта область также уменьшается. Для растворов с концентрацией фторид-иона п-Ю моль/л и более этот интервал охватывает область значений pH примерно от 4...5 до 8...9. [c.201]

    Мембрану для твердого электрода, селективного к Си +, подобно Сс " -селективному электроду, можно изготовить, диспергируя сульфид меди в матрице Ag2S [4]. Исследование поверхности электрода под микроскопом после воздействия на нее окисляющих агентов [76] показало наличие раковин (углублений) на различных участках электрода. Как следствие этого, измеряемый потенциал был смешанный. Когда на поверхности электрода отмечались углубления, угловой коэффициент кривой Е — рСи, стабильность, скорость установления потенциала уменьшались. Алмазная полировка поверхности улучшала все электродные характеристики. Обнаружено также, что нормальная блестящая поверхность Си -электрода мутнеет после соприкосновения с растворами, содержащими СГ [77]. Полировка поверхности и в этом случае ликвидирует потускнение и способствует восстановлению электродных характеристик. Если используют не хлоридный электрод сравнения и в раствор не добавляют хлориды, то никакого помутнения поверхности не наблюдается. Если хлориды прибавляют в раствор, где уже есть ионы меди, вероятно, происходит связывание их в комплексы и влияние СГ на поведение электрода мало заметно. Росс [4] показал, что если в растворе присутствуют Си + и СГ, на поверхности мембраны из смеси сульфидов меди и серебра может проходить реакция  [c.191]

    Эти электроды, также как и селективные к d + и Си , могут быть изготовлены с мембранами из сульфидов свинца и серебра, совместно спрессованных в таблетки [4]. Изготовлены также проточные устройства с электродами, селективными к и [98]. Применению электродов с мембраной из PbS—AgaS мешает присутствие в растворе Hg +, Ag+ и u + [4]. Электрод такого типа фирмы Orion использовали при прямом титровании сульфатов в 50% растворе п-диоксана [99]. В растворах, в которых пытаются оценить микроколичества сульфата титрованием с раствором перхлората свинца, должен отсутствовать PbS04 и фосфаты С1" и NOg мешают титрованию, если они присутствуют в 100-кратном избытке. С помощью РЬ +-селективных электродов измеряли содержание серы в органических соединениях в 60%-ном п-диоксане [100], полумикроколичества оксалата в 40%-ном и-диоксане [101], а также микроколичества ортофосфата методом прямого потенциометрического титрования [102]. В последнем случае значение pH растворов поддерживали на уровне 8,25— 8,75 с помощью буферных систем, присутствие же в растворе NO3 и SO4 лишь в небольшой степени мешало функционированию электрода в соответствии с уравнением Нернста. То же относится к СГ и F , хотя их наличие приводило к завышению определяемых количеств фосфатов. [c.196]

    Электроды, селективные к ионам свинца, получены также с мембранами из силиконового каучука, импрегнированного сульфидом свинца [108 ]. В этом случае электроды изготавливали тем же способом, что и Си-селектиБные электроды с силиконовыми мембранами, импрегнированными сульфидом меди, с твердым контактом, исключающим применение внутреннего раствора сравнения. Такие РЬ -селективные электроды могут быть использованы в области pH = 2,8- 7,0 при 10—70 °С, время установления их потенциала менее 2 мин. Обычные ионы лишь в незначительной степени нарушают нернстовскую функцию электрода в области концентраций 10-2—10- М (Sr = 29 мВ/p u). [c.197]

    Константы селективности К" электродов с мембранами из силиконового каучука с валиномицином и калийцинк ферроцианидом, а также электродов с жидкими мембранами [c.199]

    На основе каждого из синтезируемых веществ изготовлена мембрана. Для этого раствор, состоящий из 10 мг крауна, 1 мл дифенилфталата н 10 мл 5% (по массе) раствора ПВХ в циклогексаионе, выливали на стеклянную пластинку и позволяли растворителю испариться при комнатной температуре. В табл. VII.10 приведены значения констант селективности электродов с описанными мембранами, а также значения угловых коэ4>фициентов, измеренных для нескольких из изученных мембранных электродов [139]. [c.203]

    Созданы также (и имеются в продаже) электроды, проявляющие высокую селективность к нонам ацетилхолина по сравнению с ионами На+, К" и ЫН+ [49]. Жидкая мембрана этих электродов состоит из 5% раствора тетра(/г-хлорфенил)бората ацетилхолина либо в 3-о-нитроксилоле, либо в дибутилфталате, либо в три(2-этил-гексил)фосфате [50]. Электрод с такой жидкой мембраной обладает теоретической зависимостью потенциала от активности иона ацетилхолина (АцХ) в пределах 10 —10 /И (5э 5 ) [51 ], для иона холина (X) несколько меньше Константы селективности Кацх-м имеют значения 1-10 (М = Ма+), 1-10" (М = = ЫН , К+) и 6,6-10-2 (М х+). Проверена обратимость этого электрода к ряду алкилэфиров холина от ацетил- до бензоил холина [52]. Константы рассчитывали по уравнению [c.226]

    Электрод с твердой мембраной, селективный к NHg и (или) NH+, описан в гл. УП. Данные табл. УП1.5 показывают, что и жидкая мембрана [насыщенный раствор нонактина (72%) и монактина (28%) в трис(2-этилгексил)фосфате] функционирует как электрод, селективный в наибольшей мере к ионам аммония, а также к другим ионам в ряду  [c.235]

    Производные (2)—(6) также испробованы для изготовления электродов с ПВХ-мембраной. Электродные характеристики таких мембран представлены в табл. УП1.12. Сопоставление значений электрохимической активности лигандов показывает, что наличие сложноэфнрных групп в лиганде (1) не связано с проявляемой электродом селективностью к Са +, поскольку мембрана на основе лиганда (2) имеет те же свойства, что и мембрана на основе лиганда ( ) Тот вывод можно сделать о роли Л -алкильных групп [лиганды (3) и (4)]. Поведение мембран с лигандами (1)—(5) свидетельствует о том, что одни и те же группы во всех лигандах участвуют в образовании комплексов с Са . Замещение Л/ -алкиль-ных групп фенильными [лиганд (6) ] способствует увеличению селективности к Ва +. Вероятно, из-за стерических взаимодействий между фенильными группами внутри молекулы образуется полость больших размеров это приводит к потере дискриминации одновалентных ионов. Все перечисленные лиганды образуют с Са комплексы в стехиометрическом соотношении 1 2 и кристаллизуются. Лиганд (6) образует с Ва + комплекс в том же соотношении 1 2 [154]. [c.241]


Смотреть страницы где упоминается термин также Электрод Мембранный электрод, селективный: [c.271]    [c.87]    [c.205]    [c.73]    [c.388]    [c.273]    [c.129]    [c.112]    [c.153]   
Мембранные электроды (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ион-селективные электроды

Ион-селективные электроды электроды

Мембранные

Электрод мембранный



© 2025 chem21.info Реклама на сайте