Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость лиофильных систем

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    Агрегативная устойчивость дисперсных систем в очень сильной степени зависит от состава дисперсионной среды и может быть резко, изменена введением и нее даже очень малых количеств чужеродных электролитов. По влиянию добавок электролитов на устойчивость коллоидные системы можно разделить на два класса лиофобные и лиофильные системы. В лиофобных системах при добавлении электролитов резко увеличивается скорость коагуляции. После перехода через некоторый предел — критическую концентрацию — скорость коагуляции достигает предельного значения, характеризующего так называемую быструю коагуляцию. Лиофильные коллоидные системы коагулируют, если концентрация прибавляемого электролита весьма велика — порядка молей на литр. [c.260]

    Поскольку образуется гетерогенная система, поверхностная энергия должна быть скомпенсирована энтропийной составляющей, т. е. частицы дисперсной системы должны участвовать в молекулярно-кинетическом (тепловом) движении. Отсюда следует, что лиофильные системы могут быть только ультрамикрогетерогенными, а поверхностное натяжение на границе частица — среда должно быть очень малым. Значение поверхностного натяжения, при котором обеспечивается термодинамическая устойчивость дисперсных систем, определяется соотноше- [c.129]

    Проведенное в гл. IV термодинамическое рассмотрение позволило выделить два больших класса дисперсных систем термодинамически устойчивые — лиофильные системы и устойчивые лишь кинетически — лиофобные системы. Анализу строения, условий разрушения и устойчивости лиофобных систем посвяш,ены следующие главы книги в данной главе подробно рассмотрены условия образования лиофильных коллоидных систем, их строение и свойства. [c.217]

    Межфазное натяжение способствует переносу вещества. В термодинамически устойчивых (лиофильных) системах, поверхностное натяжение которых минимально, процесс изотермической перегонки отсутствует. В таких системах должен соблюдаться нормальный закон распределения частиц по размерам. [c.320]

    Эмульсии, характеризующиеся высокой степенью дисперсности, являются термодинамически устойчивыми равновесными системами, не требующими введения эмульгатора-стабилизатора. Называются они критическими, или лиофильными, эмульсиями в отличие от [c.14]

    Для характеристик взаимодействия между веществом дисперсной фазы и жидкостью дисперсионной среды служат понятия лиофиль-ность и лиофобность . Лиофильные дисперсные системы отличаются взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью. Если в качестве жидкой дисперсионной среды используется вода, то системы называют гидрофильными. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде неограниченно устойчивые дисперсные системы. [c.135]


    Лиофобные золи — гетерогенные (микрогетерогенные) системы, и в этом отношении их нельзя относить к истинным растворам. Лиофильные золи — однофазные системы, обладающие многими свойствами истинных растворов. Вследствие высокой поверхностной энергии лиофобные дисперсные системы термодинамически и кинетически не устойчивы. Лиофильные коллоиды устойчивы. От истинных растворов они отличаются размером частиц и формой (длинные нитеподобные и свернутые в клубок молекулярные структуры). [c.424]

    Установлено, что растворы мыл лиофильные, термодинамически устойчивые, обратимые системы. В растворах мыл существуют в равновесии мицеллы различных форм, недиссоциирован-ные молекулы и ионы. Каждой концентрации водного раствора щелочного мыла соответствует при определенной температуре определенная степень диссоциации. С увеличением концентрации и с понижением температуры равновесие смещается в сторону [c.158]

    На основании материала, изложенного в предыдущих главах, где были рассмотрены, главным образом, свойства суспензоидов, мы можем более отчетливо уяснить различие двух основных классов дисперсных систем. Растворы ВМС представляют собой лиофильные системы, термодинамически устойчивые и обратимые. Гигантские размеры макромолекул вносят специфику в свойства и [c.303]

    Лиофильные системы — молекулярные коллоиды, а также лиофильные суспензоиды (например, глины, мыла) — диспергируются самопроизвольно, образуя термодинамически устойчивые коллоидные растворы свободная энергия системы в этом процессе уменьшается  [c.228]

    В основании материала, изложенного в предыдущих главах, где были рассмотрены, главным образом, свойства суспензоидов, можно более отчетливо уяснить различие двух основных классов дисперсных систем. Растворы ВМС представляют собой лиофильные системы, термодинамически устойчивые и обратимые. Гигантские размеры макромолекул вносят специфику в свойства и поведение этих растворов, по сравнению с обычными низкомолекулярными гомогенными системами. [c.294]

    Более разнообразные возможности в отношении стабилизации имеют дисперсные системы с жидкой дисперсионной средой — пены, эмульсии, золи и суспензии. Природа устойчивости всех систем в значительной степени зависит от фазового состояния дисперсной фазы. Так, пены, подобно аэрозолям, принципиально лиофобны, но в отличие от аэрозолей могут быть эффективно стабилизованы введением ПАВ. Эмульсии и, до некоторой степени, золи могут быть очень близкими по природе устойчивости к термодинамически устойчивым лиофильным коллоидным системам, и их стабилизация с помощью ПАВ может обеспечить высокую устойчивость системы. [c.270]

    Под устойчивостью дисперсной системы понимают постоянство во времени ее состояния и основных свойств дисперсности, равномерного распределения частиц дисперсной фазы в объеме дисперсной среды и характера взаимодействия между частицами. Основной класс коллоидных систем — лиофильные коллоиды термодинамически нестабильны, т. е. склонны к коагуляции. [c.141]

    Высоцкий и Стражеско [49] отметили, что исследователи уделяли мало внимания изучению тнз или эт кремнезема, несмотря на тот очевидный факт, что для других коллоидных систем эти характеристики являются ключевыми. Авторы напомнили о наблюдениях Фрейндлиха [2], показавших, что, в то время как в изоэлектрической точке лиофобные коллоидные системы наименее устойчивы, лиофильные коллоидные системы, в частности кремнезем, напротив будут, по-видимому, в ней наиболее стабильными. Это не совсем верно, так как коллоидный [c.253]

    Ко второй гр л1пе относятся так называемые критические лиофиль-ные эмульси11 днсперсные системы, термодинамически устойчивые, самопроизвольно образующиеся эмульсии с межфазной поверхностной энергией, меньшей граничной энергии а . Лиофильные системы являются полуколлоидами (семиколлоидами) и характеризуются высокой дисперсностью. Предельный случай лиофильных систем соответствует безграничной взаимной растворимости, когда а=0, т. е. образованию однофазной системы — истинного раствора. Непрерывный переход от лиофобных к лио-фильным системам, т. е. от грубо дисперсных систем через полуколлоиды [c.15]

    Большой вклад в развитие коллоидной химии внесли такие советские ученые, как А. В. Думанский (учение о лиофильных системах), А. П. Фрумкин (свойства поверхностных слоев), П, А, Ребиндер (устойчивость и разрушение дис-, персных систем, физикохимия поверхностно-активных веществ, закономерности етруктурообразования), С. М, Липатов (растворы полимеров), В, А, Каргин (коллоидно-химические свойства лиофобных золей и полимерных систем) и мно> гие другие. [c.18]


    Термодинамически устойчивые (лиофильные) дисперсные системы, как и нстинные растворы, могут образовываться самопроизвольно — равновесное состояние системы отвечает минимуму энергии Гиббса. Это означает, что из любого другого состояния в данное состояние система переходит с уменьшением энергии Гиббса, т. е. термодинамически устойчивые дисперсные системы — системы равновесные, обратимые. Процесс образования таких систем можно представить термодинамическим соотиошенпем  [c.284]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]

    Заряд частиц лиофильных коллоидов значительно ниже или вообще отсутствует. Заряд на частице лиофильного коллоида изменяется очень легко при прибавлении небольших количеств электролитов. Изменение pH растворов приводит к легкой перезарядке коллоидного раствора. Лиофильные коллоиды заряжаются отрицательно, если концентрация водородных ионов меньше, чем в изоэлектрической точке, и наоборот. В изоэлект-рическом состоянии лиофильные системы в отличие от лиофобных устойчивы (кроме некоторых белков). В электрическом поле лиофильные коллоиды или не перемещаются, или перемещаются в любом направлении. [c.424]

    По термодинамической устойчивости и характеру об-)азования различают лиофобные и лиофильные системы. Тервые образуются из пересыщенных систем или в результате дробления более крупных частиц и являются термодинамически неустойчивыми. Лиофильные системы образуются самопроизвольно и, следовательно, термодинамически устойчивы. В лиофильных системах частицы дисперсной фазы могут состоять из небольших молекул или представлять собой одиночные молекулы большой массы. Изучение растворов высокомолекулярных соединений представляет исключительный интерес с точки зрения биологии и медицины, так как к ним относятся системы, образуемые белками, полисахаридами, нуклеотидами. [c.12]

    Типично лиофильные системы термодинамически устойчивы и хар.актеризуются самопроизвольным диспергированием. Оно возможно при условии, что возрастание свободной энергии, связанное с увеличением поверхности при диспергировании, компенсируется уменьшением энтальпии в процессе сольватации и ростом энтропии системы за счет поступательного движения образующихся частиц (см. главу XIII). Так, мыла, многие глины (например, бентонитовая) самопроизвольно распускаются в воде, а высокомолекулярные соединения растворяются в хорошем (т. е. хорошо взаимодействующим с ними) растворителе до отдельных макромолекул. Системы, в которых самопроизвольного диспергирования не происходит, могут быть названы лиофобными системами, но лио-филизированными в той или иной степени. [c.14]

    В лиофилизированных и лиофильных системах явной связи между величиной -потенциала и устойчивостью не наблюдается коагуляция вызывается десольватирующими агентами и дисперсные системы оказываются тем более устойчивыми, чем сильнее развиты сольватные оболочки. [c.240]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    По характеру молекулярных взаимодействий на границе раздела фаз все дисперсные системы могут быть разделены на две большие группы. Это, с одной стороны, лиофильные системы, для которых характерна высокая степень родственности дисперсной фазы и дисперсионной среды и соответственно компенсирован-ности связей на границе раздела — сглаженность границы такие коллоидные системы, например критические эмульсии, могут образовываться самопроизвольно и обнаруживают полную термодинамическую устойчивость как относительно агрегирования, в макрофазы, так и относительно диспергирования до молекулярных размеров частиц. С другой стороны, это разнообразные лиофобные — коллоидно- и грубодисперсные системы, в которых дисперсная фаза и дисперсионная среда менее родственны и различие граничащих фаз по их химическому составу и строению проявляется в существенной некомпенсированности поверхностных сил (в избытке энергии) на межфазной границе. Такие системы термодинамически неустойчивы и требуют специальной стабилизации. Сюда относятся все аэрозоли, пены, многочисленные эмульсии, золи и т. д. Между теми и другими системами нельзя провести четкого разделения, поэтому представляется возможным рассматривачь широкий спектр промежуточных состояний. [c.7]

    Тепловое движение частиц дисперсной фазы может обеспечить и агрегативную устойчивость свободнодисперсных систем. При очень низких значениях межфазного натяжения на границе частица — среда, отвечающих рассмотренному в 1 гл. IV условию образования лиофильных коллоидных систем а<13кТ/а , тепловое движение частиц дисперсной фазы делает термодинамически невыгодным укрупнение частиц при коалесценции и изотермической перегонке, т. е. обусловливает полную термодинамическую устойчивость дисперсных систем. Поскольку при коагуляции, как отмечалось выше, изменение свободной поверхностной энергии значительно меньше, чем при коалесценции или изотермической перегонке, можно ожидать, что в процессах коагуляции стабилизирующая роль теплового движения должна быть велика даже при относительно больших значениях поверхностного натяження на межфазной границе, обусловливая частичную (только по отношению к агрегированию частиц) термодинамическую устойчивость дисперсной системы и возможность самопроизвольного протекания обратного процесса — дезагрегации частиц, называемого пептизацией. [c.241]

    Если дисперсия самопроизвольно возникает из макрофазы при ст <(Т (и не обнаруживает при этом тенденхщи к дальнейшему дроблению частиц до отдельных молекул), то она является термодинамически устойчивой. Ребиндер предложил называть подобные дисперсии лиофильными коллоидными системами. В противоположность этому лиофобные дисперсные сисгемы, в которых энергия межфазной поверхности превышает (обычно на несколько порядков) критическое значение ст , термодинамически неустойчивы относительно процесса разделения на макроскопические фазы и не могут образовываться самопроизвольным диспергированием. Наряду с типичными лиофобными и лиофильными системами могут реализоваться различные промежуточные по природе устойч1 [вости дисперсии, в которых, в зависимости от степени родственьости дисперсной фазы и дисперсионной среды, а также концентрации и размера частиц [c.140]

    Более разнообразные возможности в отнощении стабилизации имеют дисперсные системы с жидкой дисперсионной средой — пены, эмульсии, золи и суспензии. Природа устойчивости всех систем в значительной степецн зависит от фазового состояния дисперсной фазы. Так, пены, подобно аэрозолям, принципиально лиофобны, но в отличие от аэрозолей могут быть эффективно стабилизованы введением ПАВ. Эмульсии и до некоторой степени золи по свойствам могут быть близки к термодинамически устойчивым лиофильным коллоидным системам, и их стабилизация с помощью ПАВ може обеспечить высокую устойчивость системы. В системах с твердой дисперсионной средой все процессы изменения дисперсности затруднены высокой вязкостью дисперсионной среды и малы] 1и значениями коэффициентов диффузии компонентов. [c.328]

    Рвйиадер предложил сравнить величину ( , с некоторым критическим эшчевиеы, при достижении которого коллоидная система становится тер юдинаыичвоки устойчивой (лиофильной коллоидной системой). [c.4]

    При определенных условиях в системе могут происходить самопроизвольные П. я., сопровождающиеся увеличением общей пов-сти раздела фаз. Так, самопроизвольное диспергирование и образование устойчивых лиофильных коллоидных систем (напр., критич. эмульсий) происходит в условиях, когда увеличение поверхностной энергии, вызываемое измельчением частиц, компенсируется их вовлечением в тепловое движение и соответствующзш возрастанием энтропии (см. Микроэмульсии). При гомог. образовании зародышей новой фазы при конденсации паров, кипении, кристаллизации из р-ров и расплавов увеличение энергии системы вследствие образования новой пов-сти компенсируется уменьшением хим. потенциала в-ва при фазовом переходе. Критич. размеры зародышей, при превьппении к-рых выделение новой фазы идет самопроизвольно, зависят от поверхностного натяжения, а также от величины перегрева (переохлаждения, пересыщения). Связь между этими параметрами определяется ур-нием Гиббса (см. Зарождение новой фазы). [c.590]

    Растворы защищенных колловдов. Защищенные коллоиды являются комбинированными препаратами, состоящими из малоустойчивого (собственно коллоидного) компонентов, например серебра в коллоидном раздроблении, и сильно лиофильного высокомолекулярного вещества, обусловливающего растворимость и устойчивость всей системы в целом. Связь между лио- фобным и лиофильным компонентами препарата достигается обычно за счет адсорбции одного вещества другим. При глобулярной форме макромолекул высокомолекулярного соединения лиофобная частица часто покрывается (сплошь или локально) оболочкой из лиофильных макромолекул и таким образом лио-филизируется сама. При фибриллярной (нитевидной) форме макромолекул высокомолекулярного соединения последние адсорбируют одну или несколько лиофобных частиц. Иногда в построении частицы защищенного коллоида принимает участие несколько нитевидных макромолекул высокомолекулярного соединения, связанных несколькими лиофобными частицами в агрегаты, имеющие форму растрепанных пучков или клубков большого размера. [c.187]


Смотреть страницы где упоминается термин Устойчивость лиофильных систем: [c.271]    [c.278]    [c.290]    [c.310]    [c.156]    [c.117]    [c.13]    [c.255]   
Физико-химия коллоидов (1948) -- [ c.325 , c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Система устойчивая

Системы устойчивость

Устойчивость лиофильных



© 2025 chem21.info Реклама на сайте