Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиофильные коллоиды устойчивость

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    Гидрофобные коллоиды, частицы которых по своим размерам намного больше обычных молекул, очень неустойчивы. Поэтому максимально достижимая концентрация частиц в таких коллоидах сравнительно невелика. Например, в золях золота значение с не может быть выше чем 10 частиц в 1 см раствора, что при комнатной температуре кТ эрг), согласно уравнению (3.6), соответствует Р = 40 дин/см , или 4-10 атм. Столь малое осмотическое давление нельзя измерить ни непосредственно в осмотической ячейке, ни косвенно эбулиоскопическим или криоскопиче-ским методом. Последние два метода в данном случае неприменимы еще и потому, что кипячение или замораживание неустойчивых коллоидов приводит к их коагуляции. Таким образом, размер частиц гидрофобных коллоидов невозможно определить путем измерения осмотического давления. Зато этот метод широко применяется для определения молекулярной массы высокомолекулярных соединений (т. е. лиофильных систем), что обусловлено меньшим размером их молекул и большей устойчивостью их растворов по сравнению с гидрофобными коллоидами. Устойчивость раство- [c.43]

    Коллоидные системы по своим свойствам приближаются к обычным молекулярным растворам, получаемым при растворении высокомолекулярных веществ. К последним относятся белки, каучук, различные синтетические продукты полимеризации и поликонденсации. В растворах таких веществ достигается молекулярная степень дисперсности, однако сами молекулы настолько велики, что их растворы обладают рядом свойств лиофобных коллоидов. Эти растворы называют иногда лиофильными коллоидами благодаря их большей устойчивости по сравнению с лиофобными коллоидами, что свидетельствует о большем сродстве указанных веществ к растворителю. [c.8]

    Лиофобные золи — гетерогенные (микрогетерогенные) системы, и в этом отношении их нельзя относить к истинным растворам. Лиофильные золи — однофазные системы, обладающие многими свойствами истинных растворов. Вследствие высокой поверхностной энергии лиофобные дисперсные системы термодинамически и кинетически не устойчивы. Лиофильные коллоиды устойчивы. От истинных растворов они отличаются размером частиц и формой (длинные нитеподобные и свернутые в клубок молекулярные структуры). [c.424]

    Для характеристик взаимодействия между веществом дисперсной фазы и жидкостью дисперсионной среды служат понятия лиофиль-ность и лиофобность . Лиофильные дисперсные системы отличаются взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью. Если в качестве жидкой дисперсионной среды используется вода, то системы называют гидрофильными. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде неограниченно устойчивые дисперсные системы. [c.135]


    Отличительной особенностью лиофобных коллоидов является их двойственное отношение к электролитам. Так, присутствие небольших количеств некоторых, потенциалопределяющих ионов в дисперсионной среде является необходимым для придания всей лио-фобной системе агрегативной устойчивости. Но введение в устойчивый золь несколько ббльших количеств низкомолекулярных электро-литовг обычно вызывает сначала медленную, а затем по достижении пороговой, или критической, концентраций быструю коагуляцию золя. Фактически именно подобное поведение какого-либо золя под воздействием электролита считается достаточным, чтобы классифицировать его как лиофобный в отличие от лиофильных коллоидов, для коагуляциц которых необходима высокая концентрация электролита, порядка нескольких молей на литр. Анализ и критика более старых теорий и эмпирических закономерностей Марха, Фрейндлиха, Ленгмюра, Мюллера, Вольфганга Оствальда, Тежака и др., объясняющих потерю лидфоб ыми золями своей агрегативной устой- [c.259]

    Термодинамическая устойчивость тонких прослоек дисперсионной среды хотя и является более сильным стабилизующим фактором, чем кинетическое действие адсорбционных слоев, однако в ряде случаев она недостаточна для стабилизации дисперсных систем, особенно в водной дисперсионной среде. Как правило, термодинамический фактор достаточен лишь для разбавленных дисперсных систем, так как с ростом концентрации растет число возможных соударений частичек дисперсной фазы. Концентрированные дисперсные системы можно стабилизовать лишь образованием на их частичках гелеобразно структурированных адсорбционных слоев лиофильных коллоидов и полуколлоидов. [c.89]

    Коллоидные растворы являются системами довольно устойчивыми (могут сохраняться без изменения длительное время). Относительная устойчивость коллоидных систем определяется соотношением между силами притяжения, вызывающими укрупнение гранул, и силами отталкивания, препятствующими этому процессу. Эффект отталкивания вызывается электростатическими силами, возникающими между гранулами, так как они несут одноименный заряд. У лиофильных коллоидов укрупнению гранул препятствует сольватная оболочка молекул растворителя. [c.245]

    Рассмотренный выше коллоидный раствор — золь гидроксида железа — обладает устойчивостью потому, что в его частицу входит некоторое количество воды и он находится на границе между лио-фобными и лиофильными коллоидами. [c.222]

    Для защиты необходимо очень незначительное и строго определенное количество лио-фильного коллоида, достаточное для покрытия поверхности лиофобных частиц. Дальнейшее добавление лиофильного коллоида не оказывает влияния на устойчивость системы. [c.231]

    Дерягин Б. В., Ку саков М. М. Экспериментальное исследование по сульфатации поверхностей в применении к построению математической теории устойчивости лиофильных коллоидов — Изв. АН СССР , серия химическая,. 1937, № 5, с. 1120—1149. [c.193]

    Лиофильные коллоиды резко отличаются от лиофобных, особенно по вязкости, устойчивости и зависимости от температуры. Зависимость вязкости лиофильных систем от температуры интенсивно исследуется главным образом в связи с изучением полимеров. В качестве растворителей полимеров необходимо подбирать такие жидкости, которые способны преодолевать силы межмолекулярного взаимодействия между молекулами полимера, как это требуется и от растворителей, способных образовывать истинные растворы ионных или молекулярных веществ. Вода, например, способна преодолевать силы межмолекулярного взаимодействия между молекулами крахмала, и образующаяся в результате дисперсия представляет собой типичный лиофильный коллоид. В отличие от этого целлюлоза несмотря на большое химическое сходство с крахмалом состоит из линейных молекул, упакованных парал-. лельно друг другу, и преодолеть силы взаимодей- ствия между этими молекулами способны лишь такие растворители, как фосфорная кислота и дисульфид углерода (последний после щелочной обработки целлюлозы). [c.501]

    Таким образом, существо вопроса заключается не в том, являются ли лиофильные коллоиды действительно лио-фильными , а в том, что наиболее характерные и своеобразные свойства растворов высокомолекулярных веществ объясняются наличием длинных цепных молекул (см. восьмую главу), а не сольватацией, хотя для многих полярных полимеров и белков сольватация остается главным фактором устойчивости их растворов заметную роль играет гидратация также в устойчивости таких коллоидов, как золи кремнекислоты, гидроокиси алюминия и др. [c.13]

    Под устойчивостью дисперсной системы понимают постоянство во времени ее состояния и основных свойств дисперсности, равномерного распределения частиц дисперсной фазы в объеме дисперсной среды и характера взаимодействия между частицами. Основной класс коллоидных систем — лиофильные коллоиды термодинамически нестабильны, т. е. склонны к коагуляции. [c.141]


    Напротив, лиофильные золи образуются самопроизвольно при помещении некоторых веществ в жидкость и являются гораздо более устойчивыми. Такие золи коагулируют хуже, и коагуляция их обратима (при внесении в жидкость коагулят снова может образовать золь). Обычно вещества, дающие лиофильные золи, это — высокомолекулярные соединения, молекулы которых состоят из тысяч атомов и имеют молекулярные веса более 10 тысяч кислородных единиц. Подобные молекулы-гиганты имеют размеры коллоидных частиц, так что лиофильный золь, в сущности, является молекулярным раствором высокомолекулярного соединения, причем каждая молекула — коллоидная частица. В качестве некоторых примеров лиофильных коллоидов можно назвать растворы желатины в воде, натурального каучука в бензине, плексигласа в хлороформе. [c.11]

    Физическая химия полимеров как самостоятельная область химии высокомолекулярных соединений развилась в 40-е годы на базе классической коллоидной химии [29], традиционным предметом исследования которой были, в частности, лиофильные коллоиды — природные полимеры [30]. Отказ от ряда представлений классической коллоидной химии и учет специфики строения высокомолекулярных соединений стимулировали интенсивное развитие исследований их структуры, физико-химических и механических свойств. Однако дальнейшее развитие представлений о структуре полимеров и свойствах их растворов вновь привело к необходимости рассмотрения гетерогенности этих систем на молекулярном и надмолекулярном уровнях, выражающейся в существовании различных степеней порядка в расположении макромолекул даже в аморфной фазе, существовании многофазных полимерных систем, наличии агрегатов или ассоциатов (мицелл) в термодинамически устойчивых растворах [31]. [c.9]

    Благодаря гидратированным полярным группам поверхность мицелл имеет гидрофильные свойства и очень малую межфазную свободную энергию. Это создает сродство мицелл к дисперсионной среде и сообщает системе свойства лиофильных коллоидов. Указанные особенности состояния растворов мыл и мылоподобных ПАВ выше ККМ позволяют считать их двухфазными ультрадисперсными системами, которые являют собой пример термодинамически устойчивых лиофильных коллоидных систем. В таких растворах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно растворенной частью, т. е. существует равновесие  [c.110]

    Как известно, разделение коллоидных систем на лиофобные и лиофильные с самого начала базировалось на различном характере закономерностей их коагуляции электролитами. Для коагуляции лиофильных коллоидов (в противоположность лиофобных) недостаточны малые концентрации электролитов и валентность противоиона играет намного меньшую роль. Это ясно указывает на то, что механизм устойчивости в обоих случаях различен по своей физической природе. [c.30]

    УСТОЙЧИВОСТЬ ЛИОФИЛЬНЫХ коллоидов [c.21]

    Как указывалось выше, лиофильные коллоиды характеризуются интенсивным взаимодействием дисперсных частиц со средой и термодинамической устойчивостью системы. Существуют различные точки зрения относительно того, какие коллоидные системы отнести к лиофильным и какова природа их устойчивости. Ребиндером и Щукиным была выдвинута и обоснована идея о том, что истинно лиофильными являются коллоидные растворы, в которых величина удельной свободной межфазной энергии о на поверхности диспергированных частиц меньше граничного значения а<10 Дж/ м , определяемого средней кинетической энергией броуновского движения. Согласно другой, феноменологической, [c.21]

    Лиофобные коллоиды в коллоидной химии принято характеризовать как необратимые, не обладающие агрегативной и термодинамической устойчивостью. Однако правильное понимание смысла таких утверждений может быть достигнуто только на основе более глубоких сведений о внутреннем строении лиофобных золей ( 2 7). Пока же можно принять иа лишь как противопоставление соответствующим свойствам лиофильных коллоидов. [c.500]

    Анализируется природа лиофобных и лиофильных коллоидов и связанная с пей физическая природа их устойчивости. Рассматриваются экспериментальные исследования структурночувствительных свойств граничных слоев жидкостей вблизи лиофильных подложек. Обосновывается представление о граничных фазах образуемых некоторых жидкостей. Обнаружено необратимое изменение свойств таких жидкостей, как вода, спирты, жирные кислоты в процессе конденсации их паров иа поверхности твердых теп. Причина этого изменения, как показано для воды, лежит в образовании полимерных ассоциатов. [c.363]

    Коллоидные системы, образованные мицеллами новерхностно-актив-ных веществ или высокомолекулярных соединений, являются термодинамически равновесными и при данных условиях устойчивыми. К ним можно применять термин лиофильные коллоиды (но, разумеется, не к истинным растворам тех же веществ, не содержащим коллоидных мицелл). Понятие лиофильный не означает какой-то исключительной способности к образованию мощных сольватных оболочек, оно указывает лишь на то, что величина удельной свободной поверхностной энергии на поверхности раздела с окружающей дисперсионной средой сравнительно невелика и соизмерима с энергией теплового движения мицелл. [c.40]

    Вторые (этиловый спирт, изоаыиловый, уксусная кислота, этиловый эфир, сложные эфиры, бензиновые и керосиновые фракции нефтей, не содержаш,ие ароматических углеводородов, соляровые и машинные масла) совершенно или почти совершенно асфальтенов не растворяют. Изучая оба класса растворителей, А. П. Саханов обнаружил, что по отношению к растворителям первой группы асфальтены — типичные лиофильные коллоиды, т. е. коллоиды, растворы которых обладают высокой степенью устойчивости. [c.101]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Молекулярные коллоиды — гомогенные однофазные лиофильные системы, устойчивые и обратимые, образующиеся самопроизвольно их частицы состоят из отдельных сольватных макромолекул. Эти дисперсные системы образуются из природных или синтетических высокомолекулярных веществ, которые имеют большую молекулярную массу (от десяти тысяч до нескольких мНоТлиопов). Молекулы этих веществ имеют размеры коллоидных частиц, поэтому их истинные растворы рассматриваются как коллоидные системы. Образование молекулярных коллоидных систем происходит в процессе набухания, при котором молекулы дисперсионной среды проникают в твердый полимер, раздвигая макромолекулы. При неограниченном набухании полимер переходит в растворимое состояние с образованием гомогенной системы. [c.73]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]

    Заряд частиц лиофильных коллоидов значительно ниже или вообще отсутствует. Заряд на частице лиофильного коллоида изменяется очень легко при прибавлении небольших количеств электролитов. Изменение pH растворов приводит к легкой перезарядке коллоидного раствора. Лиофильные коллоиды заряжаются отрицательно, если концентрация водородных ионов меньше, чем в изоэлектрической точке, и наоборот. В изоэлект-рическом состоянии лиофильные системы в отличие от лиофобных устойчивы (кроме некоторых белков). В электрическом поле лиофильные коллоиды или не перемещаются, или перемещаются в любом направлении. [c.424]

    Различают лиофильные и лиофобные коллоидные системы (см. 3 данной главы). Лиофильные коллоиды в общей формулировке, данной еще Фрейндлихом (1910 г.), являются по существу растворами высокомолекулярных соединений. Однако при самопроизвольном диспергировании твердого тела или жидкости в жидкой среде может образоваться и гетерогенная термодинамически устойчивая система — лиоэоль, которую и при углублении представлений о высокомолекулярных соединениях и коллоидных растворах можно называть лиофильной коллоидной системой. [c.240]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]

    Одной из наиболее давних и актуальных до сегодняшнего дня проблем коллоидной химии, в которой ярко иллюстрируется диалектика развития науки, является проблема взаимоотношения между коллоидными системами, образованными низкомолекулярными веш,ествами, и растворами и дисперсиями высокомолекулярных веществ. Сам термин коллоид , введенный Грэмом от греческого слова хсоХЛа — клей, относился прежде всего к клееподобным студнеобразным дисперсиям органических высокомолекулярных веществ и не отражает современного состояния и предмета коллоидной химии. Изучение физико-химических свойств подобных студнеобразных систем и разбавленных растворов высокомолекулярных веществ, названных Фрейндлихом лиофильными коллоидами (как обобщение предложенного Перреном термина гидрофильные коллоиды ), длительное время велось в рамках коллоидной химии. Отличие лиофильных коллоидов от лиофобных, по Перрену и Фрейндлиху, определялось в основном двумя обстоятельствами 1) способностью лиофильных коллоидов к самопроизвольному образованию и 2) резкой чувствительностью гидрофобных золей к малым добавкам электролитов, тогда пак гидрофильные коллоиды разрушаются только под действием высоких. концентраций электролита (вы-саливаиие). Различие свойств лиофильных и лиофобных коллоидов рассматривалось как следствие высокой способиости первых к сольватации коллоидных частиц (мицелл) молекулами растворителя, лиофобные же золн всегда нуждаются в стабилизаторе для сохранения агрегативной устойчивости. [c.237]

    Иногда добавление незначительного количества лио-фильного золя (например, желатина) к лиофобному (например, АзаЗз) значительно увеличивает устойчивость лио-фобного коллоида по отношению к электролитам. Такого рода стабилизация коллоидов называется защитной. Защитное действие лиофильных коллоидов объясняется их способностью адсорбироваться на поверхности частиц лиофоб-ного коллоида (рис. 73). [c.231]

    Вторая группа коллоидных систем, отличавшаяся высокой устойчивостью к действию электролитов и сравнительно хорошей растворимостью (белки, агар, желатина, крахмал и др.), называемых поэтому гидрофильными коллоидами, изучалась по аналогии с гидрофобными золями. Предполагалось, что частицы гидрофильных коллоидов также состоят из нерастворимого ядра, на поверхности которого, однако, адсорбированы не ионы, а электроней-тральные молекулы неэлектролитов (молекулярный стабилизатор), чем обусловлена их сравнительно малая чувствительность к электролитам. Различия в свойствах гидрофильных и гидрофобных коллоидов (или, с включением систем с органическими растворителями — лиофильных и лиофоб-ных коллоидов) объяснялись различием в интенсивности взаимодействия частиц этих коллоидов с растворителем, сильным связыванием растворителя (сольватацией) в лиофильных коллоидах. [c.11]

    Подробно рассматриваются способы получения дисперсных систем, вопросы их устойчивости и физические свойства лиофоб-вых золей и лиофильных коллоидов. [c.2]

    В части 3 рассматриваются дисперсные системы, свойства которых принципиально отличаются от свойств лио-фобных золей. Это отличие состоит в том, что лиофильные коллоидные растворы образуются самопроизвольно и являются термодинамически устойчивыми и обратимыми. Наиболее типичные представители таких систем — растворы коллоидных поверхностно-активных веществ (глава 12) и высокомолекулярных соединений (главы 13, 14). Лиофильные коллоиды находят широкое применение в различных отраслях промышленности и, вместе с тем, используются в качестве стабилизаторов лиофобных золей и микрогетеро-генных систем. [c.4]

    Комплекс с Ре (111). При введении в лигносульфонаты Ре (1П) наблюдаются явления, отсутствующие при таком же введении одно- и двухзарядных катионов. Резко снижается — с 5 до 2 — величина pH раствора, падает скорость электрофореза коллоидных частиц, вплотную приближаясь к изоэлектри-ческому состоянию, наступает коагуляция наиболее полимерных фракций лигносульфонатов с сильно растянутой во времени скрытой стадией. Эти особенности являются следствием связывания Ре (1П) с лигносульфонатом в комплексное соединение и проявление астабилизирующего действия, приводящего к нарушению устойчивости лиофильных коллоидов. [c.310]

    К началу 40-х годов представление о растворах полимеров как лиофильных коллоидах было окончательно отвергнуто. Это была большая победа, достигнутая в результате применения современных методов физического эксперимента и современных идей статистической физики и термодинамики к макромолекулам. Существенную роль в этом сыграли работы Каргина, Роговина, Папкова и Тагер [3], в результате которых было получено доказательство полной термодинамической обратимости и устойчивости растворов полимеров и тем самым окончательно установлено молекулярное, а не коллоидное (мицеллярное) строение этих растворов. [c.17]

    Лиофильные коллоиды проявляют сильное взаимодействие с дисперсиойной средой и в большинстве случаев устойчивы. Образование их происходит при взаимодействии полярных групп веществ с полярными жидкостями (например, карбоксильных групп мыл с водой) или при взаимодействии неполярных групп с неполярными жидкостями (например, углеводородных радикалов мыл с жидкими парафинами). [c.498]

    Различают два основных класса дисперсных систем лиофильные и лиофобные. Лиофильные отличаются интенсивным взаимодействием частиц со средой, самопроизвольным диспергированием и термодинамической устойчивостью системы. Примерами лиофильных коллоидов могут служить глины, мыла, агрегаты высокомолекулярных соединений и т. п., образующие в водной или полярной среде ц граниченно устойчивые дисперсные системы. Лиофобные коллоиды, наоборот, характеризуются значительной энергией связи внутри дисперсной фазы, превышающей энергию взаимодействия последней со средой. В этом случае диспергирование осуществляется за счет затраты внешних сил — химических или механических. При этом образуются термодинамически неустойчивые коллоидные растворы, для которых понятие стабильности имеет лишь кинетический смысл. Некоторые лиофобные системы (например, красный золь золота) могут сохранять свою устойчивость сколько угодно долго, другие, наоборот, после образования быстро ее теряют (суспензии грубодисперсных частиц, концентрированные золи сульфидов металлов и т. д.). [c.7]


Смотреть страницы где упоминается термин Лиофильные коллоиды устойчивость: [c.156]    [c.284]    [c.170]    [c.12]    [c.14]    [c.50]   
Физико-химия коллоидов (1948) -- [ c.363 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Коллоиды лиофильность

Коллоиды лиофильные

Устойчивость коллоидов

Устойчивость лиофильных



© 2025 chem21.info Реклама на сайте