Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резонанс химических связей

    Дайте определение и опишите резонанс химических связей. [c.169]

    Резонанс химических связей............214 [c.133]

    РЕЗОНАНС ХИМИЧЕСКИХ СВЯЗЕЙ [c.214]

    Резонанс химических связей основан на периодическом изменении во времени характера химических связей в кристалле или молекуле. В описанной выше кристаллической структуре льда (см. рис. 5.20) водородную связь между двумя атомами кислорода можно представить в форме 0Н---0 (в группе ОН — ковалентная или точнее водородная связь). Ввиду того, что расположение атомов кислорода в кристаллической структуре по отношению к атомам водорода симметрично, то связь можно представить двояким [c.214]


    Спектроскопия ядерного квадрупольного резонанса (ЯКР), относящаяся к радиоспектроскопическим методам, и метод мессбауэровской спектроскопии, называемый также методом ядерного гамма-резонанса (ЯГР), используются в структурных исследованиях и позволяют получать уникальную информацию о распределении электронной плотности и характере химических связей по сдвигам резонансных сигналов ядер и параметров градиента неоднородного электрического поля на ядрах, создаваемого электронным окружением. Эти данные важны как опорные для теоретической и квантовой химии. Оба метода применимы для исследования только твердых образцов. Исключительно высокая чувствительность обоих методов к малейшим изменениям электрических полей открывает возможность исследования широкого круга проблем, связанных с внутри- и межмолекулярными взаимодействиями. [c.87]

    РЕЗОНАНСА ТЕОРИЯ — химическая теория, развивающая и обобщающая классическую теорию химического строения на основании химических фактов и принципов квантовой механики. Большой вклад в развитие Р. т. внесли Л. Полинг, Г. Вейль, Э. Гюккель и др. Необходимость усовершенствования классической структурной теории возникла в связи с неспособностью этой теории удовлетворительно объяснить свойства ароматических и большинства ненасыщенных соединений. Химическая связь в молекулах органических соединений может быть не только чисто простой, двойной и тройной, как это изображают классические структурные формулы, но и промежуточного типа, т. е. возможна делокализация электронов химических связей. Наблю- [c.212]

    Метод валентных связей (метод ВС) сохранил некоторые черты теории Льюиса о локализированной химической связи. Согласно этому методу, атомы, составляющие молекулу, сохраняют свою индивидуальность, а связи возникают в результате взаимодействия их валентных электронов, т. е. атомных орбиталей. Это взаимодействие выражается набором схем спаривания электронов. Например, атомы А И В могут образовывать ковалентную структуру А—В и ионные структуры А В" и А В . Полная волновая функция, характеризующая электронное состояние молекулы ЛВ, представляет собой сумму волновых функций всех структур. С точки зрения теории резонанса, получившей развитие в рамках метода ВС, реальное электронное со- [c.24]


    Из приведенных примеров следует, что исследование изомерных сдвигов в экспериментах по ядерному гамма-резонансу дает важную информацию о характере химических связей атомов в кристаллической решетке, что является необходимым этапом при проведении структурных исследований твердого тела и создания веществ с заданными физическими свойствами. [c.205]

    Рассмотренный на примере бензола способ расчета химической связи в молекулах получил название метода наложения валентных схем (теории резонанса). Здесь используют волновые функции вида [c.176]

    Лайнус Карл Полинг (род. 1901 г.) — выдающийся американский химик, один из немногих ученых, которому была дважды присуждена Нобелевская премия (1954 г. — по химии, 1962 г. — премия Мира). В 1970 г. Л. Полингу была присуждена Ленинская премия за укрепление мира между народами. Один из создателей метода ВС, теории гибридизации, концепции резонанса, электроотрицательности и др. Внес огромный вклад в создание молекулярной биологии (спиральное строение полипептидной цепи, существование гемоглобина 8 и т. д.). На русский язык переведены его книги Не бывать войне , Природа химической связи , Общая химия и др. [c.137]

    Принятая математическая модель строения молекул получила в последнее время существенное экспериментальное подтверждение. После открытия ядерного магнитного резонанса (ЯМР) стало возможным измерять не только расстояния между ядрами атомов, входящих в состав молекулы, но и их взаимное расположение (углы). Совпадение строения молекулы, определенное методом химических связей, с фактическим строением, найденным экспериментально (ЯМР), для очень большого числа веществ является доказательством справедливости современного учения о химической связи. Таким образом, теория строения молекул А. М. Бутлерова получила дальнейшее развитие и физическую основу. [c.81]

    Ввиду исторического значения и всеобъемлющего охвата рассматриваемой области может показаться странным, что изложение деталей метода валентных схем приведено только в конце книги, особенно когда некоторые наиболее важные концепции теории валентности, такие, как гибридизация и резонанс, были сформулированы вначале как часть метода молекулярных орбиталей. Причина того, что авторы отложили описание этого вопроса до столь поздней стадии, заключается в том, что метод валентных схем в своей простейшей форме дает, вообще говоря, менее удовлетворительную картину химической связи, чем простейший вариант теории молекулярных орбиталей. [c.287]

    Для большинства ковалентных молекул существует единственная электронная формула, описывающая химическую связь в каждой молекуле. Однако в некоторых случаях можно записать две или даже большее число одинаково удовлетворительных электронных формул, в которых учтены валентности всех атомов данного вещества. В таких исключительных случаях приходится иметь дело с так называемым резонансом. Представление о резонансе связано с использованием не слишком удовлетворительного приближения, с помощью которого мы пытаемся описывать химическую связь в молекулах привычным способом составления электронных формул. В подобных случаях отдельные электронные формулы называют резонансными структурами, а истинное электронное строение молекулы, которое мы пытаемся описать, называют резонансным гибридом. [c.123]

    Рассмотрим два вещества, для характеристики химической связи в которых приходится привлекать представления о резонансе. Обычная электронная формула диоксида серы 802 указывает на наличие двойной связи между атомом серы и одним из двух атомов кислорода и простой связи между атомом серы и вторым атомом кислорода [c.123]

    Если бы химические связи всегда были независимы от соединения, в котором они находятся, то проблема молекулярной динамики легко решалась бы методами классической механики. Однако, как известно каждому химику, множество неуловимых факторов влияет на длину, полярность, направление, прочность связей. Факторами, прямо влияющими на групповые частоты и интенсивности в молекулярном спектре, являются изменения атомной массы, колебательное взаимодействие, резонанс, индуктивный эффект и эффекты поля, сопряжение, водородная связь, напряжение углов и связей [56]. Эти возмущающие факторы обсуждаются в следующих разделах. [c.155]

    Примерно в это же время цветной синтетический кварц начала производить фирма Сойер рисерч продактс в Огайо, США, продукция которой пользуется широкой известностью. Происхождение окраски как натуральных, так и синтетических разновидностей кварца интенсивно изучалось с использованием тонких методик физики твердого тела, таких, как электронный спин-резонанс и ядерно-магнитный резонанс. В этих случаях материал помещался в мощное магнитное поле и подвергался электромагнитному облучению различной частоты. Образец поглощает излучение характерной частоты, которая зависит от вида атома, его валентного состояния (числа электронов в атоме, способных образовывать химические связи) и положения в кристаллической решетке. [c.111]


    Здесь и далее автор чрезмерно преувеличивает роль концепции резонаи-< а, не упоминая о ее недостатках. Критический анализ теории резонанса см. Реутов О. А. Теоретические основы органической химии, изд. МГУ, 1964, стр. 94—98, а также Хюккель В, Химическая связь. Пер. с англ.—М. ИЛ, [c.162]

    Необходимость учета нескольких резонансных структур связана прежде всего с тем, что не всегда оказывается возможным приписать химическую связь отдельным парам атомов и, следовательно, соединение нельзя охарактеризовать классической структурной формулой, которая не противоречила бы его свойствам. В этом случае химическая связь делокализо-вана между тремя и большим числом атомов. Такой делокализации и соответствует резонанс ковалентных структур. [c.168]

    Очевидно, Сг = С4 = Сд, т.е. в (1.52) входят лишь два значения коэффициентов. Правда, энергия электронных состояний, отвечающих структурам (3), (4) И (5), выше чем структур (1) н (2) (так как в структурах Дюара одна из я-связей слабее остальных). Поэтому их вклад в величину ф будет меньше, чем вклад первых двух структур. Это означает, что в первом приближении можно не принимать во вннмаиме фз, ф< и фд, ограничиваясь Ф1 и фа. Подобный метод объяснения и расчета химической связи в молекулах получил назв.ание метода на-ложения валентных схем теории резонанса). В этом методе используют волновые функции вида [c.94]

    Исследование природы химической связи. Возможность применения ЯКР для исследования характера связи можно проиллюстрировать на простом примере. Заполненная электронная оболочка иона С1 сферически симметрична, градиент электрического поля у ядра равен нулю. Поэтому следует ожидать, что в чисто ионных хлоридах ядерный квадрупольный резонанс пе будет наблюдаться. В свободном атоме хлора электронное окружение несимметрично, имеется градиент электрического поля у ядра. Величина этого градиента известна из опытов с атомными пучками, из этих данных можно оценить частоту ЯКР для атома 54,87МГц. В органических соединениях частоты ЯКР С1 обычно равны 30--40 МГц, а в большинстве неорганических — порядка [c.332]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Третий тип структурной нежесткости связан с молекулярными перегруппировками, обусловленными процессами разрыва — образования химических связей. Быстрые и обратимые перегруппировки этого типа называют таутомерными. Одним из ярких примеров структурной нежесткости, вызванной таутомерными перегруппировками, является реакция взаимопревращения вырожденных изомеров (топомеров) бульвалена, регистрируемая методом спектроскопии ядерного магнитного резонанса  [c.457]

    Приведите структурную формулу молекулы нитрометана. Укажите тип гибридизации атомов С и N. Нарисуйте атомноорбитальную модель этой молекулы. Опишите строение нитрогруппы методом резонанса и методом мезомерци. Охарактеризуйте имеющиеся химические связи N — 0 С—N , С—Н. [c.67]

    Изложенная теория, называемая флюктуационной теорией прочности, подтверждается большим экспериментальным материа- лом. Так, в настоящее время при помощи метода инфракрасной спектроскопии показано, что под влиянием нагружения появляются напряжения в химических связях основной цепи полимера. Методом Электронного парамагнитного резонанса (глава XII) показано. гто при нагружении образуются свободные радикалы, причем в процессе нагружения сигнал ЭПР растет. Масс-спектроскопические исследования продуктов термодеструкцни и меха1тической деструкции одного и того же полимера показали, что спектры, полученные в обоих процессах, совершенно идентичны. Энергии [c.229]

    Конспективно обсуждены и подходы, используемые в квантовой химии при изучении конденсированных систем. В настоящее время появилась даже такая ветвь квантовой химии, как квантовое материаловедение, для демонстрации которой, к сожалению, места опять-таки не было. Полностью отсутствует обсуждение вопросов, важных для понимания истории развтмя химичесюэй мысли, например квантовомеханических аспектов теории резонанса, а также различных электронных теорий, например теории Гиллеспи. Не затронуты многие широко используемые квантовохимические расчетные методы, в частности различные варианты метода связанных электронных пар, а также методы анализа тех составляющих, которые в своей совокупности образуют химическую связь в молекулах (независимо от их размеров), хотя, конечно, богатство идей, здесь существующих, весьма поучительно и было бы полезно любому человеку, начинающему погружаться даже в самые поверхностные слои современной теоретической химии. Вся эта красота, все богатство красок теории в существенной степени, однако, теряются при начальном представлении материала, ограниченном жесткими рамками учебного изданри. [c.496]

    СПИНОВАЯ ПЛ0ТНОСТЬ, M. Электронная плотность. СПИНОВОГО ЗОНДА МЁТОД (метод парамагнитного зонда), метод исследования мол. подвижности и разл. структурных превращений в конденсир. средах по спектрам электронного парамагнитного резонанса (ЭПР) стабильных радикалов (зондов), добавленных к исследуемому в-ву. Если стабильные радикалы химически связаны с частицами исследуемой среды, их называют метками и говорят о методе спиновых (или парамагнитных) меток. В качестве зондов и Меток используют гл. обр. нитроксильные радикалы, к-рые устойчивы в широком интервале т-р (до 100-200 °С), способны вступать в хим. р-ции без потери парамагнитных св-в, хорошо растворимы в водных и орт. средах. Наиб, часто применяют радикалы ф-лы I. [c.399]

    Гипотетический спектр диметилтрифторацетамида- Ы, Ю, приведенный в конце гл. I, мог бы навести на мысль, что спектроскопия ЯМР используется для обнаружения в соединении магнитно различающихся ядер. Это не так, по крайней мере, по двум причинам. Во-первых, с экспериментальной точки зрения такое использование является трудным, если вообще возможным, поскольку условия и методику необходимо изменять для измерения резонансных частот разных ядер. Во-вторых, элементный состав органических соединений можно определить гораздо легче и точнее с помощью других методов, таких, как элементный анализ или масс-спектрометрия. Таким образом, значение спектроскопии ЯМР для химии основывается не на том, что она способна различить элементы, а на ее способности отличить некоторое ядро, находящееся в определенном окружении в молекуле, от других ядер того же типа. Было найдено, что на резонансные частоты отдельных ядер одного сорта влияет распределение электронов в химических связях в молекуле. Поэтому значение резонансной частоты конкретного ядра зависит от молекулярной структуры. Если для демонстрации этого явления выбрать протон, то в спектре такого соединения, как бензил-ацетат, например, будут присутствовать три различных сигнала от протонов фенильного ядра, метиленовой и метильной групп (рис. П. 1). Этот эффект вызван различным химическим окружением протонов в молекуле. Его называют химическим сдвигом резонансной частоты или просто химическим сдвигом. Таким образом, в поле 1,4 Т протонный резонанс происходит не при [c.29]

    Лучше понять особенность химической связи в резонансных системах позволяет рассмотрение образования в них а- и я-связей. Резонанс может возникать в тех случаях, когда я-связь охватывает больше двух атомных ядер. Например, в молекуле 8О2 три атома связаны друг с другом простыми а-связями. У каждого атома кислорода имеются две пары несвязывающих электронов, и еще одна пара электронов осуществляет [c.124]

    Методом электронного парамагнитного резонанса (ЭПР) установлено, что количество парамагнитных центров возрастает с увеличением степени зрелости углей. Дж.Смидт и Д.Ван Кревелен полагают, что интенсивность сигнала ЭПР связана с системой ароматических колец, поскольку между числом парамагнитных центров (ПМЦ), отнесенных к структурной единице веществ углей, и числом в ней ароматических колец (АК) имеется прямолинейная зависимость (рис. 34). Гипотеза о том, что источником парамагнетизма углей являются только свободные радикалы или разорванные химические связи, недостаточно обоснована. [c.107]


Библиография для Резонанс химических связей: [c.228]    [c.503]   
Смотреть страницы где упоминается термин Резонанс химических связей: [c.215]    [c.22]    [c.360]    [c.46]    [c.88]    [c.213]    [c.101]    [c.369]    [c.192]    [c.86]    [c.327]    [c.9]    [c.575]    [c.53]   
Очерки кристаллохимии (1974) -- [ c.214 , c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Связи резонанс

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте