Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоидные эквивалентный

    Методы определения ККМ основаны на резком изменении физико-химических свойств растворов ПАВ (например, поверхностного натяжения а, мутности т, эквивалентной электропроводности У., осмотического давления л, показателя преломления п). На кривой зависимости свойство — состав в области ККМ обычно появляется излом (рис. VI. 6). Одна из ветвей кривых (при более низких концентрациях) на рис. VI. 6 описывает свойства системы в молекулярном состоянии, а другая — в коллоидном. Абсциссу точки излома условно считают соответствующей переходу молекул в мицеллы, т. е. критической концентрацией мицеллообразования. Очевидно, что при ККМ существует весьма незначительное число мицелл. Ниже приводится краткое описание некоторых методов определения ККМ. [c.302]


    Во-первых, понятие поперечной размер имеет смысл для сферических частиц и пожалуй, еще для частиц, имеющих форму куба. Если же частицы по форме сильно отличаются от шара, то размер" частицы зависит от направления, в котором проводят измерение. Однако очень часто в коллоидной химии частицы приравнивают к сферическим, принимая, что эти сферические частицы ведут себя в определенном отношении точно так же, как действительная частица. Диаметр такой условной шарообразной частицы называют эквивалентным диаметром. [c.16]

    При выводе этого уравнения коллоидная частица принята эквивалентной сферической частице и введена поправка на так называемое электрофоретическое запаздывание (торможение), вызванное влиянием внешнего поля на двойной электрический слой. Под действием, этого, поля противоионы передвигаются в направлении, противоположном движению частицы, сообщая.этим самым движение окружающей жидкости в том же направлении. Это приводит к тому, что частица перемещается не в покоящейся, а в движущейся жидкости, в результате чего электрофоретическая скорость уменьшается. [c.203]

    Адсорбционная теория коагуляции Г. Фрейндлиха. Эта теория исходит из положения, что при коагуляции золей ионы-коагуляторы адсорбируются коллоидными частицами в соответствии с изотермой адсорбции Л = Л с /". При этом Фрейндлих считал, что коагуляция наступает при одинаковом понижении -потенциала, которое достигается при адсорбции эквивалентных количеств различных ионов. [c.426]

    Коллоидный раствор хлорида серебра был получен добавлением 1 мл раствора хлорида калия эквивалентной концентрации [c.58]

    Метод Фаянса основан на свойстве осадков солей серебра образовывать коллоидные частицы. До точки эквивалентности, когда в растворе в избытке находятся определяемые анионы, например [c.194]

    Термодинамически устойчивые дисперсии мицелл могут в определенных условиях возникать путем самопроизвольного диспергирования макрофазы ПАВ (кристаллической или жидкой). И хотя состояние вещества в мицелле не всегда полностью эквивалентно макрофазе, достаточно высокая степень ассоциации молекул в мицеллах позволяет рассматривать их как частицы иной, по сравнению с молекулярным раствором, фазы. Мицеллярные дисперсии ПАВ обнаруживают свойства, присущие коллоидно-дисперсным системам светорассеяние, повышенную вязкость и др. [c.224]

    При увеличении содержания ПАВ в растворе выше некоторой критической концентрации Ск наблюдается заметный рост светорассеяния, указывающий на возникновение новой коллоидно-дисперсной фазы изотермы поверхностного натяжения вместо обычного плавного хода, описываемого уравнением Шишковского, обнаруживают излом при с = ск, а при дальнейшем росте концентрации выше Ск значения а остаются практически неизменными (рис. УП1—8). Аналогично прн с = ск излом появляется и на кривых концентрационной зависимости удельной и эквивалентной (Л) электропроводности растворов ионогенных ПАВ (рис. У1П—9) и т. д. Концентрация с , выше которой начинается мицеллообразование (образуется некоторое экспериментально фиксируемое количество мицелл), называется критической концентрацией мицеллообразования (ККМ). Резкое изменение свойств системы ПАВ — вода вблизи ККМ позволяет по точкам излома концентрационных зависимостей многих физико-химических величин с большой точностью определять значения ККМ.. [c.225]


    T. e. в результате такого взаимодействия противоположно заряженных коллоидных частиц в эквивалентных количествах выпадает осадок Agi, лишенный заряда. Происходит взаимная коагуляция. [c.226]

    С пептизацией как нежелательным явлением часто приходится сталкиваться при промывании осадков. После отфильтровывания богатого электролитами раствора на осадке остаются адсорбированные им в эквивалентных количествах катионы и анионы. При дальнейшем соприкосновении осадка с промывной водой хуже адсорбируемые им ионы частично переходят в жидкую фазу. В результате коллоидные частицы осадка заряжаются одноименно, начинают отталкиваться друг от друга и образуют золь, проходящий сквозь фильтр. [c.335]

    При титровании выделяется бурый осадок МпОг, который затрудняет наблюдение розовой окраски избытка перманганата в точке эквивалентности, кроме того, осадок склонен переходить в коллоидное состояние. Поэтому раствор перед титрованием нагревают (для коагуляции осадка) и сильно разбавляют горячей водой (чтобы облегчить установление точки эквивалентности). [c.409]

    Коллоидные растворы обычно (но не всегда) обнаруживают явление электрофореза, открытое Ф. Ф. Рейссом в России в 1808 г. Это явление заключается в переносе коллоидных частиц в электрическом поле к тому или иному электроду. Следовательно, частицы коллоидно растворенного вещества, как и ионы, могут обладать электрическим зарядом. Явление электрофореза отличается от электролиза тем, что в последнем случае продукты электролиза выделяются на электродах в эквивалентных количествах при электрофорезе же происходит заметный перенос вещества только в каком-нибудь одном направлении. Несоблюдение при электрофорезе законов Фарадея, количественно характеризующих электролиз, долгое время заставляло предполагать, что между обоими явлениями нет прямой связи. На самом деле, как мы увидим из дальнейшего, такой вывод был неправильным, [c.11]

    Второй случай, когда в систему вводится электролит, не содержащий обоих ионов с электролитом — стабилизатором, отличается от первого только тем, что здесь имеет место явление об- мена противоионов коллоидной частицы на эквивалентное число одинаковых по знаку ионов введенного электролита. Наиболее простой обмен ионов происходит, когда на поверхности твердой фазы имеется двойной электрической слой типа Гуи— Чэпмена, т. е. когда можно пренебречь специфическим адсорбционным потенциалом ионов. Очевидно, при этом обмен будет определяться только валентностью ионов. Например, если отрицательно заряженная дисперсная фаза находится в растворе, содержащем два [c.191]

    По закону Стокса частицы эквивалентным диаметром менее 0,5 мкм вообще не оседают. Коллоидные глинистые частицы можно разделить на фракции (по размеру) в суперцентрифуге, а размер и форму частиц каждой фракции можно определить под электронным микроскопом или при помощи метода электро-оптического двойного лучепреломления. [c.111]

    По мере титрования йодида нитратом серебра образуется коллоидный осадок Agi, частицы которого обладают большой адсорбционной способностью. Заряженные положительно, они адсорбируют на своей поверхности отрицательно заряженные анионы индикатора и в эквивалентной точке вызывают изменение цвета поверхности осадка Agi от желтого до розового. [c.73]

    Однако такие небольшие коллоидные образования, как 48-мерные частицы, могут являться зародышами только в том случае, если суммарная концентрация кремнезема превышает 0,03 %), поскольку их равновесная растворимость (эквивалентная частицам 5102 диаметром 1,52 нм) составляет приблизительно 0,029 % (см. также рис. 3.56). [c.380]

    Первичные частицы коллоидного кремнезема обычно не пористы, если они сформированы или выращены в щелочном растворе и в особенности если они образованы при повышенной температуре (либо в водном растворе выше 60°С, либо сконденсированы из газовой фазы при очень высокой температуре). Плавленый кремнезем (стекло) имеет плотность около 2,20 г/см . При измерениях плотности порошков различных типов коллоидного аморфного кремнезема методом погружения в ксилол с учетом поправки на небольшое содержание поверхностных ОН-групп были получены следующие значения плотностей (считается, что эквивалентная ОН-группам вода имеет плотность [c.443]

    Анионы этих индикаторов, адсорбируясь на поверхности положительно заряженных коллоидных частиц, выпадающих в процессе титрования осадков, вызывают изменение цвета поверхности этих осадков. Если изменение цвета происходит вблизи точки эквивалентности, то можно использовать такие адсорбционные индикаторы для установления конца титрования. [c.240]

    Мыль ные растворы обладают такой же эквивалентной проводимостью, как растворы простых солей. Этот факт может показаться неожиданным, если учесть известную мицеллярную струк,-туру мыльных растворов. Это наблюдение натолкнуло Макбэйна (см. ссылку 161) еще в 1913 году на мысль определить понятие коллоидного электролита ионной мицеллы. Согласно его теории, коллоидные электролиты являются растворами, которые содержат крупноразмерные ионы или ионные мицеллы, представляющие собой агрегаты из многих отдельных ионов. Такие агрегаты многовалентны, т. е. они содержат большое количество зарядов. Так, например, если мицелла состоит из 50 ионов олеата натрия, то это обозначает, что она содержит 50 отрицательных зарядов. Следовательно, если речь идет об ионном заряде, то объединение в мицеллы ни в коем случае не приводит к уменьшению электропровод- чости раствора. [c.195]


    По мере приб.чижения к точке эквивалентности коагуляция коллоидного раствора МпО происходит все быстрее и двуокись марганца собирается на дне колбы в виде плотного осадка. Раствор над осадком становится все менее мутным, а незадолго до достижения точки эквивалентности делается совершенно прозрачным. [c.389]

    Установка нормальности рабочего раствора. В коническую колбу берут пипеткой 20—25 мл 0,5 н. рабочего раствора азотнокислого серебра, приливают 2 мл индикатора и 5 мл 6 н. раствора азотной кислоты, затем титруют из бюретки раствором роданистого аммония, приливая го медленно, небольшими порциями, при постоянном взбалтывании. Под конец титрования происходит коагуляция коллоидного раствора роданистого серебра и мутный раствор над осадком становится прозрачным. Поверхность осадка адсорбирует некоторое количество ионов серебра, и окраска роданистого железа появляется раньше достижения точки эквивалентности. Однако эта окраска исчезает, так как ионы серебрг. постепенно реагируют с роданидом. Титрование прекращают после появления нейсчезающей при энергичном взбалтывании коричневато-розэвой окраски раствора вследствие образования роданистого комплекса железа  [c.423]

Рис. 39. Зависимость эквивалентной (а) и удельной (б) электропроводности от концентрации коллоидного 1ПАВ Рис. 39. Зависимость эквивалентной (а) и <a href="/info/6416">удельной</a> (б) электропроводности от концентрации коллоидного 1ПАВ
    Очень существенное значение для получения коллоидных систем имеет концентрация реагирующих растворов. В результате химических реакций, вриводя-щих к образованию плохо растворимых веществ, при малых концентрациях реагирующих веществ получаются золи, при больших концентрациях — осадки и при весьма больших концентрациях — гели. Это хородио можно проследить ца примере реакции желтой кровяной соли К<[Ре(СК)б] и хлорида железа РеСЬ, в результате которой образуется берлинская лазурь Ре4[Ре(Ш)в]э- Если быстро смешать в эквивалентных количествах концентрированные растворы хлорида железу и желтой кровяной соли, то берлинская лазурь выделяется в виде густого геля. Небольшое количество этого геля при размешивании в большом объеме воды дает стойкий золь. Если вместо концентрированных растворов исходных веществ взять 10-кратно разбавленные растворы, то в результате реакции образуется осадок, не способный переходить в золь, сколько бы его не размешивали. Наконец, если растворы хлорида железа и желтой кровяной соли разбавить очень сильно и затем смешать, то получится устойчивый золь берлинской лазури. [c.227]

    Ядро коллоидной частицы с адсорбированными зарядообразующими ионами притягивает к себе из среды ионы противоположного знака заряда. Зарядообразующие ионы и противоионы гидратированы, и поэтому вместе с ними в коллоидную частицу приходит вода, молекулы которой создают гидратную оболочку. Весь этот комплекс перемещается в растворе как единое целое, его и называют коллоидной частицей. В состав коллоидной частицы входит только часть имеющихся в системе противоионов, их называют связанными. Другая часть противоионов остается в дисперсионной среде (в жидкой фазе). Эти противоионы называют свободными. Они дают заряд дисперсионной среде. Все сочетание, состоящее из коллоидной частицы и эквивалентной ей части дисперсионной среды (гидратированных свободных противоионов), называют мицеллой. Мицеллу считают структурной единицей коллоидного раствора. [c.172]

    Большое значение для получения коллоидных систем имеет исходная концентрация реагирующих растворов. При малых концентрациях реагирующих веществ получайтся золи, при больших концентрациях — осадки и при весьма больших концентрациях гели, способные легко пептизироваться. Это хорошо можно проследить на примере реакции желтой кровяной соли К4[Ее(СМ)е] и хлорного железа РеС1з, в результате которой образуется берлинская лазурь Ре4[Ее(СЫ)б1з. Если быстро смешать концентрированные эквивалентные растворы хлорного железа и желтой кровяной соли, образуется берлинская лазурь в виде густого геля. Небольшое количество этого геля при размешивании в большом количестве воды дает стойкий золь. Если концентрированные растворы тех же веществ предварительно разбавить приблизительно в 10 раз водой, то в результате реакции образуется осадок, не способный переходить в золь. Если, наконец, смешать сильно разбавленные растворы желтой кровяной соли и хлорного железа, то получится устойчивый золь берлинской лазури. [c.305]

    Рассмотрим строение коллоидной частицы на примере образования золя иодида серебра. Если к разбавленному раствору иодида калия добавить эквивалентное количество pai TiBopa нитрата серебра, то сразу же выпадает осадок иодида серебра. Но если к раствору иодида калия приливать раствор нитрата серебра постепенно, по каплям, т. е. в условиях, когда в растворе имеется избыток иодида калия, то получается золь иодида серебра. В этом случае иодид калия способствует стабилизации коллоидных частиц Agi. Таким образом, KI является стабилизатором частиц Agi, препятствуя сближению частиц. [c.228]

    Хотя, как отмечалось выше, важнейшую роль при коагуляции электролитами играет валентность ионов, однако заметно сказывается и их индивидуальный химический характер. Во многих случаях такая специфичность действия ионов связана с разряжением коллоидных частиц вследствие образования на их поверхности малодиссоциированных или труднорастворимых соединений. Например, потребные для быстрой седиментации отрицательного золя AsjSa концентрации НС1 и КС1 относятся друг к другу, как 3 5. Более сильное коагулирующее действие НС1 обусловлено происходящим под влиянием избытка водородных ионов разряжением коллоидных частиц в результате образования в их адсорбционном слое недиссоциированных молекул H2S. Точно так же более сильное коагулирующее действие на положительный гидрозоль окиси железа иона ОН по сравнению, например, с ионом СИ обусловлено образованием в адсорбционном слое труднорастворимых молекул Fe(OH)a. Так как ионы ОН тратятся на нейтрализацию ионов Fe" не самих частиц, а только адсорбированных ими, в осадок при седиментации выпадает много больше вещества, чем то, отвечало бы эквивалентным соотношениям. Например, 1 г аммиака может осадить из гидрозоля до 2000 г водной окиси железа (л Ре20з-1/Н20). [c.617]

    С пептизацией как нежелательным явлением часто приходится сталкиваться при промывании осадков. После отфильтровывания богатого электролитами раствора на осадке остаются адсорбированные им в эквивалентных количествах катионы и анионы. При дальнейшем соприкосновении осадка с промывной водой хуже адсорбируемые им ионы частично переходят в жидкую фазу. В результате коллоидные частиЦы осадка заряжаются одноименно, начинают отталкиваться друг от друга и образуют золь, проходящей сквозь фильтр. Во избежание этого приходится создавать условия, благоприятствующие коагуляции, т. е. промывать легко пептизирующйеся осадки не чистой водой, а раствором электролита. Последний подбирается таким образом, чтобы он не вредил дальнейшим проводимым с осадком операциям. [c.619]

    Молекулы Agi объединяются в практически нерастворимые частицы, в которых ионы Ag+ и I- образуют кристаллическую решетку. Исследования 3. Я. Берестневой и В. А. Каргина при помощи электронного микроскопа показали, что новообразованные частицы вначале имеют аморфное строение, затем постепенно в них происходит кристаллизация. Если AgNOg и К1 взяты в эквивалентных количествах, то частицы-кристаллики растут, достигая значительной величины, превосходящей размеры коллоидных частиц, и быстро выпадают в осадок. Если же одно из исходных веществ взято в небольшом избытке, то оно служит стабилизатором, сообщающим устойчивость коллоидным частицам Agi. Так, при избытке AgNOa в растворе будет находиться большое количество ионов Ag и NO3-. Однако построение кристаллической решетки Agi согласно правилу Панета — Фаянса может идти только за счет ионов, входящих в ее состав в данном случае за счет ионов Ag+. [c.150]

    В формуле вместо активностей подставлены концентрации, так как значения активностей для цинкатных растворов не известны. В солевых растворах в начале при разряде образуется окись или гидроокись цинка, которая затем либо переходит в электролит в виде коллоидных частиц 2пО[2п(ОН)2], либо образует гетаэролит 2п(МпОО)2, либо дает комплексные соединения с МН4С1 электролита. При рН< 7 образуется труднорастворимый комплекс [2п(МНз)2]С12, при рН = 9—10 получается более растворимый [2п(ЫНз)4]С12. При высоком содержании 2п в электролите может выпасть осадок оксихлорида 2пС12 42п(0Н)2. Потенциал 2п в хлоридных растворах равен —0,7-г—0,8 в. Применение магниевого электрода представляет интерес из-за его более отрицательного (по сравнению с цинком) потенциала и малого эквивалентного веса. По своему стандартному потенциалу магний должен был бы разлагать воду с выделением водорода, но можно подобрать условия, когда магний пассивируется и хорошо сохраняется в электролите [20]. [c.556]

    При малой концентрации электролита, высокой концентрации коллоидных частиц и большой величине их эффективного заряда, т. е. когда < lИ/eNA, величина х близка к исходной концентрации с. электролита. Иными словами, практически весь электролит должен в этих условиях перейти в чистую дисперсионную среду. Это означает, что при сильно развитых диффузных слоях ионов и достаточно плотном расположении частиц, когда ионные атмосферы частиц соприкасаются, коионы (в данном случае Ма+) практически полностью удаляются из системы через полупроницаемую мембрану в чистую дисперсионную среду (увлекая за собой, разумеется, и эквивалентное число ионов обратного знака). Соответственно, если концентрированная коллоидная система контактирует через полупроницаемую мембрану с раствором электролита, то при выполнении условия с 9 /еЫА электролит не будет переходить в дисперсную систему. Эти явления, наблюдаюшиеся также и для растворов полиэлектролитов и белков (для которых мембраны непроницаемы), очень важны при функционировании клеток растений и животных. [c.200]

    При образовании коллоидных растворов за счет химических реакций в водных растворах стараются создать такие условия, в которых на частицах образующейся твердой фазы адсорбируются избирательно катионы или анионы, которые сообщают частицам одноименный заряд, защищающий их от слипания. Если, например, слить в строго эквивалентных количествах 0,05 и. растворы AgNOa и KI (в равных объемах), то заряда на частицах образующегося Agi не возникает, так как ни ионы К+, ни ионы NQa избирательно на них не адсорбируются и поэтому частицы быстро слипаются. Однако если при приливании раствора AgNOa к раствору KI оставить маленький избыток KI, то образуется устойчивый золь с отрицательными зарядами на частицах Agi. В этом случае избирательно адсорбируются ионы 1 , достраивая кристаллическую решетку Agi. [c.219]

    Модель, положенная в основу теории, представляет собою коллоидный раствор, oдepлiaщий первоначально сферические частицы одинакового размера со счетной (количественной) концентрацией фо При рассмотрении механизма взаимодействия двух частиц принимается простое допущение их объединение происходит тогда и только тогда, когда одна из них попадает в сферу действия другой (соприкасается с ней). Задача заключается в опреде--лении счетной концентрации фь фг, фз, . простых, вторичных, третичных частиц и т. д. в момент времени т. Задача о коагуляции коллоидов явилась первым прилон ением разработанной Смолуховским теории броуновского движения. Поэтому, исходя из эквивалентности броуновского движе- ния и молекулярной диффузии, он рассматривает решение уравнения нестационарной диффузии к поверхности сферы радиуса Я с граничными условиями г=Я с=0 г >Д с= = Со и начальным условием т=0, г>Д с=со, где г — радиальная координата с — концентрация. На основе этого решения получена формула для определения количества вещества, адсорбированного за время т поверхностью шара. Если упростить ситуацию и считать рассматриваемый процесс квазистационарным, то эта формула имеет вид М=АпОЯсох, где — коэффициент диффузии. [c.108]

    Электропроводность коллоидного раствора слагается из электропроводности, обусловленной коллоидными частицами, и электропроводности находящихся в растворе электролитов. Если посторонних электролитов в растворе очень мало (высокоочищенные растворы белков и полиэлектролитов), измерениями электропроводности можно воспользоваться для определения удельного заряда или подвижности частиц, однако, в лиофобных золях определить собственную электропроводность коллоидных частиц довольно трудно. Существенное влияние на собственную электропроводность частиц оказывает структура двойного электрического слоя, так как подвижность компенсирующих ионов ограничивается электрофоретическим торможением со стороны коллоидных частиц (более медленно передвигающихся в поле, чем ионы) и скоростью перестройки ионной атмосферы в переменном поле (эффект релаксации). В свою очередь, измерениями электропроводности в широком диапазоне частот (дисперсия электропроводности) пользуются при изучении структуры двойного слоя. В растворах полиэлектролитов (например, полиакриловой кислоты) измерения эквивалентной электропроводности X при различных концентрациях представляют интерес для характеристики формы молекул, так как значения X падают в той области концентраций, в которой расстояния между молекулами полимера становятся велики по сравнению с толщиной двойного электрического слоя (Каргин). Измерения электропроводности коллоидных растворов при их взаимодействии с нейтральными солями (метод кондуктометриче-ского титрования) широко применялись при исследовании состава двойного слоя и процессов вытеснения из коллоидных частиц, например, подвижных Н+-ионов (Паули, Рабинович). [c.131]

    II. 1.5. Метод Либиха Основан на фиксировании точки титрования но нросветлению раствора в изоэлектрической точке (близкой к точке эквивалентности) вследствие разрушения коллоидных частиц и укрупнения осадка. Как правило, точность этого метода невелика и зависит от наличия фоновых электролитов и характеристик поверхности раздела фаз осадок-раствор. [c.44]

    На керамике. Для получения равномерного покрытия V2O6 на керамике (например, на шамоте) к раствору NH4VO3 прибавляют 2—3-кратное эквивалентное количество минеральной кислоты. В образующемся темно-желтом растворе, содержащем коллоидные частицы УгОб-ад, кипятят керамические изделия (просто нагревание на водяной бане оказывается недостаточным). На поверхности изделий осаждается желто-красный прочный слой V2OS. Следует работать в стеклянной, а не в фарфоровой посуде. [c.1524]

    По мере прибавления по каплям раствора AgNOg титруемая смесь мутнеет. Вблизи точки эквивалентности наблюдается частичная коагуляция коллоидного осадка Ag I. В этот момент титрование проводят еще более внимательно и осторожно, сильно перемешивая содержимое колбы, Титрование заканчивают, когда белый осадок Ag l окрашивается в красный цвет. Титрование выполняют 3—4 раза и, получив три сходящихся результата, вычисляют результаты анализа (см. гл. I, 10). [c.246]


Смотреть страницы где упоминается термин Коллоидные эквивалентный: [c.207]    [c.174]    [c.175]    [c.245]    [c.335]    [c.137]    [c.653]   
Курс коллоидной химии (1976) -- [ c.47 , c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы диаметр эквивалентный



© 2025 chem21.info Реклама на сайте