Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гриньяра кислотой

    За открытие этой реакции Гриньяр получил Нобелевскую премию, причем основная его заслуга не просто в разработке легкого пути синтеза магнийорганических соединении. Гриньяр понял, что открытая реакция может быть ключевой в синтезе самых разнообразных классов органических соединений углеводородов, спиртов, альдегидов, кетонов, кислот и т.д. [c.200]

    Вероятно, что на первой стадии взаимодействия всех приведенных выше производных кислот с реактивом Гриньяра происходит реакция нуклеофильного присоединения по карбонильной группе  [c.295]


    Циклизация 1,6-дигалоидпроизводных металлами не имеет практической ценности. Методы, включающие реакции Гриньяра, полностью аналогичны получению этим путем циклопентановых углеводородо) . При пиролизе солей пимелиновых кислот образуются циклогексаноны приблизительно с такими же выходами, как при получении циклопентанонов из адипиновых кислот, при этом наблюдаются те же ограничения однако получать циклогексан этим путем невыгодно. [c.463]

    С помощью реакции Гриньяра получите изобутан, изобутиловый спирт, 2-метил-З-пентанол, 5-метил-3-этил-3-гексанол, изомасляный альдегид, метилэтилкетон, 2-метилбутановую кислоту. [c.106]

    Получение соединений Гриньяра с последующим превращением их действием углекислоты в карбоновые кислоты. [c.204]

    Взаимодействие реактивов Гриньяра с диоксидом углерода широко применяется для синтеза карбоновых кислот. Как и в случае соответствующей реакции литийорганических соединений [см. разд. 15.1.1.3(36)], в качестве побочных продуктов могут образовываться кетоны или третичные спирты, но если удается избежать избытка реактива Гриньяра, кислоты образуются с хорошими выходами. Однако синтез кетонов из карбоксилатов магния и реактивов Гриньяра ие удается превратить в удобный синтетический метод (см. также примечания к табл. 15.2.4). [c.51]

    Первая молекула реактива Гриньяра реагирует с фенилуксусной кислотой как основание, образуя соль, в которой атомы водорода метиленовой группы активированы двумя электроноакцепторными группами. Если в реактиве Гриньяра R —неопентил или изопропил, то вторая молекула его, реагируя как основание, отщепляет от этой соли протон, образуя енолят (44), который, как предполагают, через шестичленное переходное состояние реагирует с бензальдегидом по альдольному типу с образованием гидроксикислоты, имеющей два асимметрических атома углерода  [c.288]

    Дегидратация третичных спиртов. Высокомолекулярные третичные спирты должны дегидратироваться в мягких условиях. Иногда спирты оказываются термически неустойчивыми и самопроизвольно дегидратируются в процессе перегонки. Часто полученный спирт оказывается достаточно устойчивым и не разлагается при перегонке, особенно если принять меры предосторожности против разложения продуктов реакции Гриньяра, избегая применения сильных кислот. [c.506]

    Нафтеновые кислоты с гекса- и пентаметиленовым кольцом можно получить по реакции Гриньяра путем взаимодействия соответ-ствуюш,его магнийгалоидалкила с углекислотой [c.315]


    Амины получаются также аминолизом алкилхлоридов. При взаимодействии алкилхлоридов с сульфатами образуются водорастворимые сульфонаты. На основе алкилхлорида получают соединения Гриньяра, из которых при взаимодействии с оксидом углерода (IV) образуются карбоновые кислоты. При взаимодействии с безводным карбонатом натрия алкилхлориды превращаются в сложные эфиры, с сульфгидратами щелочей—в тиоспирты. В реакции Фриделя— Крафтса алкилхлориды взаимодействуют с аренами. Они дехлорируются с образованием алкенов. Алкилхлориды используют для введения в молекулы высокомолекулярных алкильных групп при производстве инсектицидов и ядохимикатов, для повышения растворимости полученных соединений в смеси углеводородов (нефтепродуктов), а также во многих других производствах. Термическим хлорированием технического пентана получают амилхлориды, которые гидролизуют затем щелочью в амиловые спирты, используемые непосредственно или в виде их амилацетатов в качестве растворителей и важного вспомогательного материала в лакокрасочной промышленности [18]. [c.325]

    Реакции, катализируемые кислотами и основаниями. Термическая изомеризация. Взаимодействие с реактивами Гриньяра 58 [c.4]

    Спирт, как более сильная кислота, протонирует карбанионный центр реактива Гриньяра, что и приводит к разрушению последнего  [c.28]

    Используя твердую углекислоту или пропуская СО через эфирный раствор реактива Гриньяра, получают соли карбоновых кислот. Действуя на них растворами сильных минеральных кислот выделяют сами карбоновые кислоты  [c.102]

    Таким образом, димер реактива Гриньяра одновременно выступает как нуклеофильный реагент и как кислота Льюиса, образуя шестичленное переходное состояние. [c.278]

    Предположение, что взаимодействие енолов с карбонильными соединениями может проходить через образование шестичленного переходного состояния, позволяет интерпретировать результат взаимодействия реактива Гриньяра. фе-нилуксусной кислоты и бензальдегида  [c.288]

    При взаимодействии Л. Л -диалкиламидов или солей карбоновых кислот с реактивами Гриньяра реакция останавливается на стадии нуклеофильного присоединения с образованием аддукта (51). Это объясняется тем, что вытеснение реактивом Гриньяра на второй стадии реакции такого аниона, как, например, М(СНз)2. чрезвычайно энергетически невыгодно. Вследствие этого диалкиламиды и соли карбоновых кислот иногда используют как исходные вещества при синтезе альдегидов и кетонов  [c.296]

    Связь = N менее поляризована, чем связь С = 0, так как азот менее электроотрицателен, чем кислород, поэтому вторая молекула реактива Гриньяра к образовавшемуся аддукту обычно не присоединяется. Таким образом, нитрилы, аналогично алкиламидам кислот, могут служить исходными веществами при синтезе кетонов. [c.297]

    Аналогичным образом реактивы Гриньяра взаимодействуют с диоксидом серы с образованием сульфиновых кислот  [c.298]

    Синтез альдегидов и кетонов. Альдегиды и кетоны могут быть получены взаимодействием реактивов Гриньяра с эфирами кислот. Из эфиров муравьиной кислоты получают альдегиды. Эфиры всех остальных кислот дают кетоны  [c.216]

    Реактивы Гриньяра реагируют со всеми соединениями, содержащими активный водород (вода, спирты, фенолы, кислоты, аммиак, первичные и вторичные амины и амиды) с образованием углеводородов  [c.175]

    В результате присоединения двуокиси углерода к реактивам Гриньяра и последующего разложения можно получить карбоновые кислоты  [c.175]

    Диметилцинк п этом случае дает выходы около 45%, но с ним опасно работать. Смесь (около 55 45) цис-транс-изомеров 1,3-диметилциклопентана была получена с выходом 91% из 1-хлор-1,3-диметилцикло-пентана восстановлением натрием в жидком аммиаке. Этим же методом был получен 1-метил-З-этилциклопентан (смесь цис-транс-изомеров около 50 50) из 1-глор-1-этил-3-метилциклопонтана. Промежуточные гидроксициклопентаны были получены действием соответствующего реактива Гриньяра на 3-метилциклопентанон, приготовленный сухой перегонкой 3-метиладипиновой кислоты над гидроокисью бария. В свою очередь адипинопая кислота была синтезирована окислением 4-метил-циклогексанола (из /г-крезола) азотной кислотой в присутствии ванадата аммония. Общие выходы, считая на 4-метилциклогексанол, были около 20%. [c.453]

    При взаимодействии реактива Гриньяра с хлорангидридами кислот образующийся кетон сразу реагирует с этим реактивом с образованием третичного спирта. Отой нежелательной реакции можно избежать, если применять кадмийорганические соединения в бензоле в присутствии производных магния. Кэзон [3] составил весьма обстоятельный обзор применения кадмийорганических соединений. [c.504]

    Гидролиз реакционных тгомплексов идет лучше всего со льдом, а если образуется устойчивая эмульсия, то добавляется разведенная уксусная р ислота. При взаимодействии реактива Гриньяра с ниа рилом продукт реакции должен быть гидролизован разбавленной соляной кислотой. [c.506]


    Помимо указанных способов, галоидные алкилы можно перевести в сульфокислоты путем синтеза сульфиновых кислот при помощи реакции Гриньяра ц их последующего окисления. В качестве окислителей применялись бромная вода (при получении метан- и этансульфокислот [41]) и перманганат калия (в случае циклоиентан-, циклогексан- и 3-метилциклогексансульфокислот [42]). [c.110]

    Добавление 1-нафтилмагнийбромида к очищенному хлоругольному эфиру при температуре от О до 5 дает этиловый эфир 1-нафтойной кислоты. Необходимо проводить реакцию при низкой температуре, так как реактив Гриньяра способен вступать в дальнейшую реакцию с образовавшимся сложным эфиром. Этиловый эфир 1-нафтойной кислоты очищают фракционной перегонкой чистый препарат подвергают гидрированию. Никель иа кизельгуре и никелевый катализатор Ренея позволяют проводить избирательное гидрирование этого эфира при различных условиях [21], причем образуются как ас-, так и аг-эфиры. [c.513]

    Наиболее простым препаративным методом синтеза индивидуальных нафтеновых кислот следует считать метод Гриньяра, разработанп1,1Й Зелинским [2], который этим путем получил еле-душите кислоты  [c.293]

    Американский исследователь Микешка [13] синтезировал ряд углеводородов частью конденсацией хлорангидридов кислот с ароматическими углеводородами (с последующим восстановлением образовавшихся кетонов в углеводороды по Клеменсену). частью по реакциям Гриньяра. [c.367]

    Спирты затед могут быть превращены с хорошими выходами в галоидалкилы, которые с успехом могут быть использованы в разнообразных синтезах по реакциям Гриньяра, Bюpцa-Фиттинг , Густавсона — Фриделя-Крафтса и т. д. Можно провести прямое гидрирование несколько легче, с выходом 80—99%, над меднохромовым катализатором [34]. Представляет большой интерес прямое гидрирование кислот при помощи литий-алюминийгидрида, хотя сообщения о работах в этом направлении неизвестны. [c.316]

    Для этого по реакции Гриньяра из бромистого изопропила и радиоактивной углекислоты была получена Р-метилпропиоповая кислота. Последнюю этерифицировали и эфир восстановили в изобутиловый спирт. Из этого спирта получили йодид, который обработкой спиртовым раствором едкого кали перевели в изобутилен  [c.355]

    На холоду нитроолефины легко присоединяют галоиды, образуя дигало-иднитроалканы [150]. Кроме того, иитроолефины присоединяют спирты и меркаптаны [151], серонодород, бисульфит натрия, [152], аммиак, амины [153J, нитропарафины [154], синильную кислоту [155] и реагируют с реактивом Гриньяра [156]. [c.495]

    Весьма существенно также и то, что купратные комплексы являются более слабыми основаниями, чем исходные реактивы Гриньяра, и потому не реагируют с ацетиленовыми С—Н-группамп, как с кислотами. [c.95]

    Исходным соединением в синтезе служил 5-бромпентан-1-ол (2), взаимодействие тетрагидропиранилового эфира которого 3 по реакции Гриньяра с акролеином дало ключевой синтон — алкеновый вторичный спирт 4. Термическая перегруппировка Кляйзена гладко протекает при нагревании аллилового спирта 4 с триэтилортоацетатом в присутствии каталитических количеств пропионовой кислоты. После снятия тетрагидропиранильной защиты получен этиловый эфир 10-гидрокси-4Е-деценовой кислоты (5). Далее спирт 5 действием пири-динийхлорхроматного комплекса окислен в соответствующий альдегид 6, который был вовлечен в реакцию Виттига с фосфорным илидом, [c.23]

    Обычно при проведении этих рса1сций эфирный рас-грор карбонильного соединения вносят по каплям ири механическом перемешкпаиин в эфирный раствор свежеприготовленного реактива Гриньяра с такой ск( ростью, чтобы эфир спокойно кипел (реакция экзотермична). Образовавшийся алкоголят магния после нагревания реакционной смеси разлагают подкисленон водой. При синтезе третичных спиртов для разложения используют водный раствор хлорида аммония, так как в присутствии минеральных кислот возможна дегидратация. [c.277]

    Какие кислоты получатся реакцией Гриньяра, если наряду о двуокисью углерода использовать бромистый изопропилмагний, бромистый пентилмагний, бромистый изопентилмагний  [c.82]

    Реакции с производными карбоновых кислот. Аналогично карбонильной группе в альдегидах и кетонах, в производных карбоновых кислот R OY группа OY (Y = Hal, O OR, OR, NR2. ОМ) способна к присоединению реактивов Гриньяра, Реакционная способность производных карбоновых кислот зависит от величины частичного положительного заряда на атоме углерода карбонильной группы (которая в свою очередь зависит от М- и /-эффектов группы У) и уменьшается в ряду  [c.293]

    Наименьшей реакционной способностью обладают соли карбоновых кислот. Однако они также способны реагировать с магнийорганическими соединениями. Об этом свидетельстпуе тот факт, что при получении карбоновых кислот действием СО2 на RMgX (см. ниже) выходы целевого продукта невысоки, если в предварительно приготовленный реактив Гриньяра пропускают газообразный СО2. В этом случае в реакционное смеси все время имеется избыток RMgX, который конкурентно реагирует как с СО2, так и с образовавшейся на первой стадии [c.293]

    При взаимодействии реактивов Гриньяра с амидами сильно разветнленных кислот образуются не продукты присоединения, а нитрилы- [c.296]

    Первоначально идентичность УФ-спектров а- и -гидрокси-пйридинов со спектрами Л -метилпиридинов, которым отвечает единственная структура, позволила предположить, что в отличие от а- и у-аминопиридинов а- и у-гидроксипиридинам отвечают формулы (110) и (111). Однако впоследствии было показано, что реальным а- и у-гидроксипиридинам несвойственны реакции, характерные для карбонильной группы (они не реагируют с фенилгидразином и не присоединяют реактивов Гриньяра), а также для вторичной аминогруппы (они с трудом реагируют с СНз1 и не образуют солей четвертичных аммониевых оснований). На этом основании соединение (НО) следует скорее относить к амидам кислот, а соединение (Ш)—к ви-нилогам амидов кислот. В обоих соединениях взаимное влияние функциональных групп настолько велико, что обе они утрачивают характерные для каждой из них свойства. [c.549]


Смотреть страницы где упоминается термин Гриньяра кислотой: [c.504]    [c.480]    [c.254]    [c.288]    [c.37]    [c.449]    [c.121]    [c.59]    [c.4]    [c.1168]    [c.1182]    [c.296]   
Введение в электронную теорию органических реакций (1977) -- [ c.553 ]




ПОИСК





Смотрите так же термины и статьи:

Галоидангидриды фосфоновых кислот с реактивами Гриньяра

Гриньяр

Гриньяра инверсии сахарозы кислотой

Гриньяра кислота Льюиса

Гриньяра реактив карбоновых кислот

Гриньяра реактив эфиров ароматических кислот с галоидом в ядре

Гриньяра реактивы, синтез и перегруппировки карбоновые кислоты

Гриньяра серной кислоты, алкил-кислородное расщепление

Гриньяра хлорангидридов карбоновых кислот

Жирные кислоты мыла из соединений Гриньяра

Зфиры карбоновых кислот из реактивов Гриньяра

Из реактивов Гриньяра и эфиров угольной кислоты

Карбоксилирование реактива Гриньяра. Получение а-наф- s тойной кислоты

Карбоновые кислоты алифатические по реакции Гриньяра

Кислоты алкилсульфиновые, получение из реактива Гриньяра действием

Кислоты из реагентов Гриньяра

Кислоты карбоновые синтез с помощью реактива Гриньяра

Кислоты синтез алюминий алкилы Гриньяра

Кислоты тио, синтез Гриньяра реактивы

Методы синтеза алканов Электросинтез по Кольбе. Гидрирование алкенов Декарбоксилирование солей карбоновых кислот Восстановление галогенпроизводных алканов. Синтез Вюрца. Реакция Гриньяра

ПРИСОЕДИНЕНИЕ также восстановление, гидролиз, Гриньяра реакция Реагенты, которые присоединяются, заключены в скобки перед Вг Вг Линолевая кислота

ПРИСОЕДИНЕНИЕ также восстановление, гидролиз, Гриньяра реакция Реагенты, которые присоединяются, заключены в скобки перед Вг Вг Линоленовая кислота

ПРИСОЕДИНЕНИЕ также восстановление, гидролиз, Гриньяра реакция Реагенты, которые присоединяются, заключены в скобки перед Н Вг Метиловый эфир бромпропионовой кислоты

Препаративные методы синтеза спиртов Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот

Присоединение воды, спиртов, тиолов, аммиака и его производных, синильной кислоты, реактивов Гриньяра, бисульфита натрия Полимеризация альдегидов Окисление альдегидов и кетонов

Присоединение реактива Гриньяра к нитрилу сероводорода к метиловому эфиру акриловой кислоты

Реакции, катализируемые кислотами и основаниями Термическая изомеризация. Взаимодействие с реактивами Гриньяра Органические перекиси (пероксиды)

Синтезы Гриньяра, гидроборирование-окисление, восстановление альдегидов, кетонов, сложных эфиров, карбоновых кислот Химические свойства спиртов

Электросинтез по Кольбе. Гидрирование алкенов. Декарбоксилирование солей карбоновых кислот. Восстановление галогенпроизводных алканов. Синтез Вюрца Реакция Гриньяра Применение алканов



© 2025 chem21.info Реклама на сайте