Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель и его сплавы пассивация

    Увеличение содержания углерода ухудшает, а присадка никеля способствует пассивации сплавов (рис. 228, 229). [c.298]

    Второй способ защиты - введение в металл компонентов, повышающих его коррозионную стойкость в-данных условиях, или удаление вредных примесей, ускоряющих коррозию. Он применяется на стадии изготовления металла, а также при термической и механической обработке металлических деталей. Во многих случаях легирование металла, мало склонного к пассивации, металлом, легко пассивируемым в данной среде, приводит к образованию сплава, обладающего той же (или почти той же) пассивируемостью, что и легирующий металл. Таким путем получены многочисленные коррозионно-стойкие сплавы, например нержавеющие стали, легированные хромом и никелем. Однако широкое внедрение этого способа сдерживается высокой стоимостью нержавеющих металлов. [c.15]


    Большое значение для уменьшения потерь металлов от коррозии имеет использование в народном хозяйстве различных сплавов (нержавеющие, кислотоупорные, жаростойкие и др.), в состав которых входят такие элементы, как хром, никель, титан, молибден, вольфрам. Эти элементы, как известно, имеют склонность К пассивации и замедляют коррозию. [c.274]

    Создание сплавов с антикоррозионными свойствами. Введением в состав стали до 12 % хрома получают нержавеющую сталь, устойчивую к коррозии. Усиливают антикоррозионные свойства стали добавки никеля, кобальта и меди. В этом случае повышается склонность сплавов к пассивации. Создание сплавов с антикоррозионными свойствами — одно из важных направлений борьбы с коррозионными потерями. [c.164]

    Влияние никеля на пассивационные характеристики сплавов также хорошо согласуется с индивидуальными характеристиками этого металла. Согласно имеющимся данным, потенциал пассивации высокохромистой стали (25% [c.19]

    Для сплавов железо-никель теоретически ожидаемое при повышении содержания железа в сплаве смещение потенциала пассивации в положительном направлении экспериментально подтверждается (для 1 н. 112804) лишь при концентрациях железа до 5-10 ат.% [57]. Дальнейший рост содержания железа (до 30 ат.%) сопровождается сдвигом Фп в отрицательном направлении (рис. 7). Такая аномалия связывается с образованием интерметаллического соединения и исчезает при концентрациях железа в сплаве более 30 ат,%. [c.19]

    Пассивационные свойства сплавов никель-хром хорошо коррелируют с соответствующими характеристиками индивидуальных металлов. Так, рост содержания хрома в сплавах N1—Сг приводит к смещению потенциала пассивации сплава в серной кислоте в отрицательном направлении [57,88] (рис. 8 [57] При этом также снижается кри- [c.19]

Рис. 7. Зависимость потенциала пассивации сплавов железо-никель в 1 н. серной кислоте от концентрации железа в сплаве Рис. 7. <a href="/info/68508">Зависимость потенциала</a> пассивации <a href="/info/260507">сплавов железо-никель</a> в 1 н. <a href="/info/1812">серной кислоте</a> от <a href="/info/71974">концентрации железа</a> в сплаве
Рис. 8. Зависимость потенциала пассивации сплавов никель-хром в 1 н. серной кислоте от содержания хрома в сплаве Рис. 8. <a href="/info/68508">Зависимость потенциала</a> пассивации сплавов никель-хром в 1 н. <a href="/info/1812">серной кислоте</a> от <a href="/info/1291545">содержания хрома</a> в сплаве

    Склонность железа [92] хрома [ 93] и никеля [40,94,96] к переходу в пассивное состояние существенно зависит от их кристаллографической структуры. Так, потенциал пассивации никеля, полученного методом вакуумного электроннолучевого рафинирования, имеет различные значения в зависимости от термической обработки никеля [95]. Отожженный при 750 никель характеризуется более положительным потенциалом пассивации в серной кислоте по сравнению с деформированным. Термическая обработка существенно сказывается и на пассивационных свойствах сплавов Ре—Сг и Ре-Сг-1Ч1 [55]  [c.20]

Рис. 9. Влияние содержания хрома в сплаве никель-хром на критический ток пассивации а - в 1 н. и 6 - в 0,01 н. растворах серной кислоты Рис. 9. <a href="/info/1291545">Влияние содержания хрома</a> в <a href="/info/1267258">сплаве никель-хром</a> на критический ток пассивации а - в 1 н. и 6 - в 0,01 н. <a href="/info/56031">растворах серной</a> кислоты
    Электрохимическое поведение пассивных сплавов железа с хромом и никелем коррелирует с поведением составляющих их металлов. Так, для хромистых сталей установлено снижение количества электричества, необходимого для пассивации, с ростом содержания в них хрома до некоторой критической величины (12-14%) [70,114], Аналогичные результаты были получены для сплавов же-лезо-никель, критическое содержание никеля в которых соответствует 30% [ 114 ]. Эти результаты согласуются с заключением о более тонких пассивирующих слоях на хроме и никеле по сравнению с железом. [c.26]

    Способность к пассивации делает алюминий весьма стойким во многих нейтральных и слабокислых растворах, в окислительных средах и кислотах. Хлориды и другие галогены способны разрушать защитную пленку, поэтому в горячих растворах хлоридов, в щелевых зазорах алюминий и его сплавы могут подвергаться местной язвенной и щелевой коррозии, а также коррозионному растрескиванию. Коррозионная стойкость алюминия понижается в контакте с медью, железом, никелем, серебром, платиной. Столь же неблагоприятное влияние оказывают и катодные добавки в сплавах алюминия. Для алюминия характерно высокое перенапряжение водорода, которое наряду с анодным торможением (окисная пленка) обеспечивает высокую коррозионную стойкость. Примеси тяжелых металлов (железо, медь) понижают химическую стойкость не только из-за нарушения сплошности защитных пленок, но и вследствие облегчения катодного процесса. [c.73]

    Никель, как и железо, способен к пассивации. Его пассивность в отличие от железа более устойчива и может возникать на воздухе, в водных растворах щелочи и при анодной поляризации. Добавка никеля к стали или чугуну обычно оказывает облагораживающее действие а черные металлы, их сплавы с никелем более стойки к коррозии. Пассивность никеля обусловлена образованием стойких окисных пленок, закрывающих поверхность металла и затрудняющих переход его ионов в раствор. В зависимости от способа пассивации строение и состав окисных пленок могут быть различны. Пассивность никеля может вызываться хемосорбцией гидроксильных или кислородных ионов иа поверхности металла, образованием его окислов и гидроокисей или других нерастворимых в данном растворе соединений. Пассивирование никеля при анодной поляризации определяется свойствами анионов электролита и сильно зависит от величины pH раствора чем больше его pH, тем скорее и полнее пассивируется металл . Пассивации способствуют также повышение анодной плотности тока, снижение температуры и наличие в растворе ионов никеля. Противоположное влияние на пассивацию никеля оказывает присутствие в электролите хлор-иона, сульфатов, карбонатов и других кислотных анионов 5 З", а также наличие примесей в металле Агрессивное действие ионов хлора и кислородсодержащих анионов проявляется тем сильнее, чем меньше концентрация щелочи. В растворах карбонатов никелевый анод нестоек. [c.212]

    Для выяснения роли никеля в сплавах было изучено анодное поведение опытных сплавов никеля с хромом. Как видно из анодных поляризационных кривых (рис. 146), пассивация этих сплавов облегчается при увеличении содержания в них хрома. Никель, а также сплавы его с небольшим содержанием хрома быстро активируются при анодной поляризации в растворах хлористого натрия. [c.301]

    Скорость соосаждения Мо проходит через максимум при тех же концентрациях Мо, что и скорость выделения N1 (рис. 5). Рост скорости выделения Мо до максимума объясняется увеличением активности молиб-дат-ионов в электролите, рост скорости выделения N1 объясняется образованием более бедных никелем сплавов однако несмотря на дальнейшее увеличение активности молибдат-иоыов в электролите и уменьшение содержания N1 в сплаве как скорость выделения Мо, так и скорость выделения N1 начинают падать. Причипо является изменение пассивации электрода с изменением состава сплава. Образующаяся пленка пе препятствует разряду ионов водорода, но препятствует разряду ионов N1 и Мо,уплотняясь с увеличением содержания Мо в сплаве. При 33 — 34%-ном содержании его она становится почти непроницаемой для иопов N1 и Мо. Столь же плотные плепки образуются и на чистом Мо, препятствуя выделению Мо на Мо. [c.534]


    Еще Фладе заметил [6], что пассивная пленка на железе тем дольше остается устойчивой в серной кислоте, чем длительнее была предварительная пассивация железа в концентрированной азотной кислоте. Другими словами, пленка стабилизируется продолжительной выдержкой в пассивирующей среде. Франкенталь [17] заметил также, что хотя для пассивации 24 % Сг—Ее в 1 н. НаЗО достаточно менее монослоя Оа (измерено кулонометрически), пленка становится толще и устойчивее к катодному восстановлению, если сплав некоторое время выдержать при потенциалах положительнее потенциала пассивации (см. рис. 5.1). Возможно,. наблюдаемое стабилизирующее действие является результатом того, что положительно заряженные ионы металла проникают в адсорбированные слои отрицательно заряженных ионов и молекул кислорода благодаря сосуществованию противоположных зарядов поддерживается тенденция адсорбционной пленки к стабилизации. Данные метода дифракции медленных электронов для одиночных кристаллов никеля [28], например, свидетельствуют о том, что предварительно сформированная адсорбционная пленка состоит из упорядоченно расположенных ионов, кислорода и никеля, находящихся на поверхности металла приблизительно в одной плоскости. Этот первоначальный адсорбционный слой более термоустойчив, чем оксид N10. При повышенном давлении кислорода на первом слое образуется несколько адсорбционных слоев, состоящих, возможно, из Оа. В результате образуется аморфная пленка. С течением времени в такую пленку могут проникать дополнительные ионы металла, особенно при повышенных потенциалах, становясь подвижными в пределах адсорбированного кислородного слоя. Окамото и Шибата [29] показали, что пассивная пленка на нержавеющей стали 18-8 содержит НаО аналогичные результаты получены для пассивного железа [30]. [c.83]

    Никель, содержащий 0,6 -электронных вакансий на один атом (определено магнитным способом), в сплаве с медью — непереходным металлом, не имеющим -электронных вакансий, сообщает сплаву склонность к пассивации при атомном содержании Ni 30—40 %. Этот критический состав определялся по скорости коррозии в растворе Na l (рис. 5.12 и 5.13), по склонности к питтингу в морской воде (рис. 5.13), и более точно, путем оаре-деления значений /крит и /пас (рис. 5.14) [46—48] или по значениям Фладе-потенциалов в 1 н. H2SO4 (рис. 5.15) [49]. Питтингообразование в морской воде наблюдается главным образом при [c.92]

    При введении в никель хрома он приобретает стойкость в окислителях (в частности, НЫОз и Н2СГО4). Определенное по измерениям критической плотности тока минимальное массовое содержание хрома, необходимое для анодной пассивации сплава в серной кислоте, составляет 14 % [3]. Однако сплавы с хромом более чувствительны к воздействию С1 и НС1. В неподвижной морской воде на них образуются более глубокие питтинги. Хром повышает также стойкость никеля к окислению при повышенных температурах. Широкое применение нашел сплав, содержащий 20 % Сг и 80 % N1 (см. разд. Ю.11.3). [c.361]

    Кобальт можно анодно запассивировать в 0,5 т растворе H2SO4. Для этого необходима минимальная плотность тока 5000 А/м , что в 14 раз больше соответствующей плотности тока для никеля [1 ]. Легирование кобальта хромом приводит к уменьшению плотности тока для пассивации сплава с 10 % Сг требуется плотность тока лишь в Ю А/м (1 мА/см ). Сплав, содержащий 10—12 % Сг, почти не подвергается коррозии в горячем и холодном 10 % растворе HNO3, однако в 10 % растворе H2SO4 ИЛИ НС пассивации не происходит, и скорость коррозии достигает очень высоких значений. Легирование сплавов Со—Сг молибденом или вольфрамом ослабляет воздействие на них серной или соляной кислоты, но не азотной. i [c.369]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Потенциал, при котором наступает пассивность (так называемый потенциал пассивации), и глубина пассивации, т. е. степень уменьшения скорости растворения, зависят от свойств металла и электролита. Так, никель, железо и стали пассивируются быстро и глубоко в растворах щелочей и поэтому практически не растворяются в этих средах. Это явление широко используется на практике в качестве нерастворимых анодов в щелочных растворах применяют никель и сталь. Свинец быстро и глубоко пассивируется в сернокислых нейтральных и кислых растворах. В практических условиях свинец и его сплавы применяются в качестве нерастворимых анодов в растворах, содержащихЗОГ. [c.250]

    Положение переходной области на оси потенциалов зависит от многих факторов и, в частности, от ориентации кристаллических граней на поверхности электрода. Поэтому при заданном потенциале могут достигаться условия пассивации одних граней, тогда как другие продолжают активно растворяться. Это играет важную роль в истолковании природы некоторых видов коррозии. Аналогично этому каждая структурная составляющая сплава также характеризуется своей парциальной потенциостатической кривой. На рис. 195 представлены парциальные потенциостатические кривые компонентов нержавеющей стали, содержащей 18% хрома, 8% никеля и не большую примесь углерода. При застывании этой стали по границам зерен выпадают карбиды хрома СгазСя и Сг,Сз, далее следует узкая зона обедненного углеродом раствора и, наконец, среднюю часть зерна образует твердый раствор, в котором содержание компонентов отвечает среднему составу сплава. Если потенциал электрода поддерживается в переходной области, то, как видно из рис. 195, наиболее быстрому растворению подвергается зона обедненного углеродом металла. При потенциалах в области перепассивации происходит более интенсивное растворение карбидов хрома. При этом сталь подвергается межкристаллитной коррозии. [c.366]

    Легирование металлов — эффективный (хотя и дорогой) метод повышения коррозионной стойкости металлов. При легировании в состав сплава вводят компоненты, вызывающие пассивацию металла. В качестве таких компош итов применяют хром, никель, вольфрам и др. Широкое применение нашло легирование [c.234]

    В сильноокислительных средах никель и его сплавы, особенно сплавы никеля с хромом, устойчивы благодаря пассивации. [c.141]

    В основе многих специфических видов коррозии лежит явление ласснвации, т. е. самопроизвольный переход металла в пассивное инертное состояние в данной коррозионной среде. Наблюдая за явлением пассивации железа в азотной кислоте, еще Фарадей предположил, что пассивность железа обусловлена субмикроскопически тонкой пленкой оксида или насыщением валентностей поверхностных атомов металла кислородом. Подобное объяснение сохраняет свою силу и для объяснения пассивного поведения железа, хрома, никеля и их сплавов. В ряде случаев для перехода металла в пассивное состояние достаточно хомосорбированного монослоя (или даже доли его) кислорода. Однако пассивность для ряда металлов может возникать при образовании толстых слоев оксидов (Т1, А1) ли продуктов коррозии (РЬ, 8п, 2п). [c.32]

    Коррозионностойкие стали — это прежде всего сплавы железа с хромом, содержание которого в стали не менее 12 %. Хром, являющийся элементом, хорощо пассивирующимся в нейтральных и окислительных средах, обусловливает резкое повышение способности к пассивации сплавов железо—хром при содержании его 12 %. Иа других легирующих элементов наиболее важным является никель, стабилизирующий аустенитную структуру нержавеющих сталей, обеспечивающий высокие пластичные и технологические свойства и повышение в ряде случаев коррозионных свойств. Заменителем никеля до определенного предела является марганец, стабилизирующий, подобно никелю, аустенитную структуру. [c.69]

    Азот в виде при.месей или дополнительное легирование им в концентрации -0,15% оказывает благоприятное влияние на коррозионное поведение хромоникелевых сталей, способствуя расширению у-области. Чем выше содержание азота в хромоникелевой стали, тем меньше требуется никеля, чтобы сделать структуру стали полностью аустенитной. Введение -0,1,5% N заменяет от 2 до 4% N1 и испо.иьзуется в качестве присадки, в основном для стали типа 18-8, что повышает устойчивость аустенита при холодной деформации стали. В концентрациях 0,15-0,25% азот образует в сплавах Ре-Сг и Ре-Сг-№ избыточные фазы нитридов типа шпинели (РеСг)4Ы (а-фаза) и Сг К, что сдвигает стационарный потенциал стали в сторону более положительных значений, а образующиеся нитриды представляют эффективный катод, облегчающий пассивацию сплава. [c.83]

    Тройные системы Ag—А1—N1, Ag—А1—Ре, А —2п—N1 и Ag—2п—Ре являются наиболее интересными, но они еще не изучены. Выбор серебряных сплавов Ренея ограничен тем, что электродный скелет не должен подвергаться коррозии при активации электродов извлечением растворимых компонентов. При работе с концентрированной щелочью, например 5 н. КОН, и никелевым скелетом этого можно не опасаться. В кислых средах обычно нужно создавать на никеле и железе защитный слой путем пассивации. Зтого можно добиться, например, подав напряи<ение от внешнего источника тока или продувая кислород сквозь поры электрода. Для железного скелета пассивация может оказаться необходимой даже в щелочных растворах. [c.327]

    Цннк и его сплавы в средних и жестких условиях эксплуатации сочетаемы с хромом, никелем (цинк с пассивацией), анодированным алюминием п его сплавами, пассивированным цнн- [c.11]

    Нержавеющие стали — сплавы на основе железа, легированные хромом или хромом и никелем, а также и другими элементами, коррозионная стойкость которых обусловлена, в первую очередь, их пассивными свойствами. Поэтому проводят многочисленные исследования по изучению влияния различных факторов—состава, среды, температуры, на повышение пассивируемости сталей этого класса. Электрохимическое поведение основных компонентов этих сталей—железа, хрома, никеля в 1 iVH2S04 показано на рис. 44 [27]. Очевидно, что хром имеет наиболее отрицательное значение потенциалов пассивации Еп и полной пассивации Еап-, а также и минимальный ток растворения в пассивном состоянии пп по сравнению с железом и никелем. В соответствии с этим при повышении содержания хрома в сплавах с железом происходит смещение Еа и Еаа в отрицательную сторону, а также наблюдается уменьшение п и пп (рис. 45). Многими исследователями было отмечено, что изменение этих характеристик происходит наиболее резко при увеличении содержания хрома от 12 до 13%, как показано на рис. 46 [118]. При легировании железа никелем пассивируемость сплавов также возрастает [84, 119], но в гораздо меньшей степени, чем при легировании железа хромом. Пассивные свойства сплавов Fe — Ni являются промежуточными между пассивными свойствами чистых металлов. Введение в состав хромистых сталей 8% Ni и более приводит к уменьшению тока пассивации ia, но смещает потенциал нассивирования Еа в положительную сторону [84, 118] (рис. 47). Легирование нержавеющих сталей небольшими количествами [c.73]

    И железохромоникелевого сплава на никелевой основе типа нихрома Х18Н60. Эти сплавы отличаются главным образом содержанием никеля (от нуля у стали Х27 до 60% у сплава Х18Н60) и имеют, как показали предварительные исследования, различные значения потенциала пассивации в 30%-ной НдЗО при 50 С  [c.92]

    КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]


Смотреть страницы где упоминается термин Никель и его сплавы пассивация: [c.841]    [c.294]    [c.19]    [c.129]    [c.224]    [c.841]    [c.16]    [c.65]    [c.69]    [c.197]   
Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивация

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте