Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отличие физической адсорбции от химической

    ОТЛИЧИЕ ФИЗИЧЕСКОЙ АДСОРБЦИИ ОТ ХИМИЧЕСКОЙ [c.31]

    В отличие от физической адсорбции химическая адсорбция, или хемосорбция, осуществляется при помощи химических сил. Эти виды адсорбции имеют следующие отличительные признаки физическая адсорбция — явление обратимое, и теплота ее составляет всего 8,4—33,5 кДж/моль, в то время как теплота химической адсорбции достигает десятков и сотен кДж/моль. С повышением температуры физическая адсорбция уменьшается, а химическая увеличивается. Объясняется это тем, что химическая адсорбция требует более значительной энергии активации (40—120 кДж/моль). [c.348]


    Адсорбция бывает физическая и химическая. При химической адсорбции (хемосорбции) полярные концы молекул, связываясь с поверхностью тела, образуют на ней монослой своего рода химического соединения. Подвижность молекул в результате этого сильно ограничивается. Хемосорбция в отличие от физической адсорбции носит избирательный характер она протекает с большей интенсивностью в местах нарушений кристаллической решетки включениями или незаполненными узлами. [c.60]

    Адсорбционные методы очистки газа основаны на селективном извлечении примесей твердыми поглотителями - адсорбентами. При этом извлекаемый компонент может вступать в химическое взаимодействие с адсорбентом (химическая адсорбция) или удерживаться физическими силами взаимодействия (физическая адсорбция). Химическая адсорбция не нашла широкого промышленного применения в газопереработке из-за сложностей, возникающих на стадии регенерации отработанного адсорбента. Физическая адсорбция отличается легкостью регенерации адсорбента и широко используется в промышленных процессах для тонкой очистки газов от сероводорода, диоксида углерода, сераорганических соединений и влаги. В качестве адсорбентов наибольшее распространение нашли активированные угли и синтетические цеолиты. [c.15]

    При хемосорбции в отличие от физической адсорбции молекулы поглощаемого вещества образуют поверхностное химическое соединение, при этом преодолевается обычно значительный энергетический барьер и адсорбция называется активированной. Поэтому хемосорбция данного вещества происходит лишь на некоторых избранных адсорбентах, в то время как физическая адсорбция возможна на любых поверхностях. Хемосорбция — обычно необратимый процесс. Опыты показали, что высокая каталитическая [c.272]

    Адсорбция обусловлена притяжением между молекулами поверхности твердого тела (адсорбента) и молекулами жидкости или газа (адсорбата). Экспериментально обнаружены два типа адсорбции, у которых интенсивность притяжения отличается приблизительно на порядок. В некоторых случаях притяжение сравнительно невелико и имеет ту же природу, что и притяжение между любыми двумя молекулами, т. е. происходит физическая адсорбция. В других случаях силы притяжения родственны силам, проявляющимся при образовании химических связей такай процесс называют химической адсорбцией, или хемосорбцией. Как будет показано ниже, обоим этим процессам свойственны и другие отличия. [c.204]

    Безусловно, нельзя провести четкой границы между физической и химической адсорбциями, тем более что наряду с ярко выраженными, очевидными случаями встречаются и промежуточные, слабо выраженные, при которых эта граница достаточно расплывчата. Особенно трудно найти экспериментальные критерии, которые позволили бы с достоверностью отличить физическую адсорбцию от так называемой слабой формы хемосорбции. [c.12]


    Трудно переоценить значение определения теплот адсорбции. Теплота адсорбции обычно используется как критерий, который позволяет отличить физическую адсорбцию от химической. В случае физической адсорбции теплота адсорбции обычно меньше 4 ккал моль, в то время как теплоты хемосорбции изменяются от 5 ккал моль до таких высоких значений, как 150 ккал/моль. Для полностью обратимой хемосорбции теплота адсорбции может быть вычислена с помощью уравнения Клаузиуса — Клапейрона по изотермам, полученным при различных температурах. Однако, принимая во внимание специфичность хемосорбции и наличие вариаций адсорбционного потенциала почти на всех реальных поверхностях, установление истинного равновесия является скорее исключением, чем правилом, и этот метод определения теплот хемосорбции имеет ограниченное применение. Более предпочтительно прямое измерение теплот адсорбции с помощью калориметра [25]. За исключением ледяного калориметра и ему подобных [26], конструкция большинства адсорбционных калориметров преследует цель сохранения выделяемого при хемосорбции тепла по возможности в самом адсорбенте, при этом наблюдают повышение температуры адсорбента с помощью термометра сопротивления или термопары [27]. Было сделано лишь немного попыток осуществить вполне адиабатические адсорбционные калориметры, поскольку в большинстве конструкций наличие высоковакуумной оболочки обеспечивает достаточно малую скорость охлаждения и дает тем самым возможность внести точные поправки на основании закона Ньютона. Определение этих поправок при комнатной температуре не представляет трудностей, но с повышением температуры такие определения усложняются, что препятствует [c.491]

    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]

    Поскольку энергетическое состояние адсорбированных молекул незначительно отличается от их состояния в газовой фазе, физической адсорбцией невозможно объяснить каталитическое воздействие твердого тела на реакцию между устойчивыми молекулами (отсутствует возможность уменьшения энергии активации химической реакции). Однако в некоторых случаях, например, когда реакция на поверхности твердого тела происходит между атомами и радикалами и характеризуется небольшой энергией активации, физическая адсорбция играет определенную роль в контактных процессах. [c.274]

    Итак, уголь при низких температурах адсорбирует кислород физически, и процесс этот сходен с ожижением газа, тогда как при высоких температурах имеет место химическое взаимодействие. Хорошо известно, что ожижение газа происходит практически мгновенно (если оно имеет место в условиях не очень низких давлений и если теплота конденсации mohi t достаточно быстро рассеиваться). Эта высокая скорость характерна для данного явления почти вне зависимости от температуры. Не удивительно, что таким же свойством отличается и физическая адсорбция. В отличие от физической адсорбции, скорость химических реакций в высокой степени зависит от температуры, падая при очень низких температурах до величин, не поддающихся измерению. Если графически выразить зависимость от температуры количества водорода, адсорбированного окисью цинка, то получится кривая, изображенная на рис. 5. В сравнительно узком температурном интервале имеет место значительное повышение адсорбции. Что ниже этой температуры адсорбция имеет физический характер, видно из того, что адсорбированный газ может быть удален эвакуированием. Заключение это подкрепляется и низкой величиной теплоты адсорбции, приблизительно в 1900 кал на моль при 0°С. С другой стороны, водород, адсорбированный при высокой температуре, может быть удален только в виде воды, и его теплота адсорбции равна 20 ООО кал (между 300 и 444° С). Наконец, скорость адсорбции при высоких температурах изменяется с температурой очень сильно, проявляя в этом отношении свойства химической реакции. В области температур между 250—450° К, где общая величина адсорбции растет (см. кривую рис. 5), скорость адсорбции изменяется мало. Напротив, при низких температурах скорость [c.89]


    Силы химической связи могут значительно превышать силы физической адсорбции. В отличие от физической адсорбции химическая адсорбция значительно возрастает с повышением температуры, а при низкой температуре почти полностью отсутствует. [c.210]

    Для хемосорбции характерен значительный тепловой эффект, соизмеримый с теплотами химических процессов, чем она заметно отличается от физической адсорбции. [c.126]

    Особое значение в гетерогенных каталитических процессах имеет активированная адсорбция. В отличие от неспецифичной и обладающей малой энергией активации физической адсорбции активированная адсорбция обеспечивается силами химической природы. Опыты показали, что высокая каталитическая активность часто сопровождается значительной активированной адсорбцией. [c.349]

    Межмолекулярное взаимодействие отличается от химического небольшими энергиями (от долей кДж/моль до 15—20 кДж/моль, тогда как энергии химических связей, например ковалентной связи, 150—400 кДж/моль), отсутствием специфичности и насыщаемости, проявляется на сравнительно больших расстояниях (порядка 0,4—0,7 нм). Силы Ван-дер-Ваальса действуют при сжижении газов, их кристаллизации, физической адсорбции (поглощение газов и жидкостей поверхностями раздела без образования химических поверхностных соединений) и т. д. [c.125]

    Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40,,, 120 кДж/моль, повышение температуры способствует хемосорбции в отличие от физической адсорбции, Примером такой адсорбции является адсорбция кислорода на вольфраме или кислорода на серебре при повышенных температурах. [c.268]

    При химической адсорбции молекулы адсорбата, связанные с адсорбентом прочными химическими силами, не могут перемещаться по поверхности последнего (локализованная адсорбция), В отличие от хемосорбции при физической адсорбции могут иметь место как нелокализованная адсорбция, когда молекулы адсорбата способны передвигаться по поверхности адсорбента, так и локализованная адсорбция, [c.268]

    Впрочем, иногда мы сталкиваемся с такими случаями, когда трудно отличить физическое превращение от химического. Примером таких превращений является взаимодействие газов с поверхностью твердых тел, называемое адсорбцией. Однако в подавляющем большинстве случаев различие между физическими и химическими превращениями совершенно очевидно, и, руководствуясь их определениями, мы облегчаем себе классификацию и изучение различных превращений в лаборатории и в природе. [c.21]

    Для неблагородных металлов физическая адсорбция быстро переходит в химическую. Химическую адсорбцию отличают от физической по ряду признаков. Основной из них — это большой тепловой эффект (85 420 кДж/моль), величина которого, соизмеримая с тепловым эффектом образования окислов, явно указывает на ионный характер связи. Наряду с этим имеются косвенные доказательства химической связи, проявляющиеся в заметном изменении ряда физических свойств в уменьшении электронной эмиссии, увеличении контактного потенциала, повышении порога фотоэлектрической чувствительности и др. [c.10]

    В отличие от физической адсорбции хемосорбция обусловлена перераспределением электронов взаимодействующих компонентов с образованием химической связи. Если физическую адсорбцию можно сравнить с явлением конденсации вещества, то хемосорбция — это химический процесс, протекающий на поверхности раздела фаз. [c.198]

    Избирательное поглощение молекул вещества поверхностью твердого адсорбента происходит вследствие воздействия на молекулы целевого компонента неуравновешенных поверхностных сил адсорбента. Различают физическую адсорбцию, вызываемую силами молекулярного взаимодействия, и химическую адсорбцию (хемосорбцию), при которой молекулы поглощаемого вещества вступают в химическую реакцию с молекулами на поверхности адсорбента. В отличие от физической адсорбции при хемосорбции поглощенные поверхностью молекулы не сохраняют индивидуальность. [c.189]

    Возникает вопрос, а существуют ли надежные экспериментальные критерии, которые бы позволили четко разграничить две области адсорбции По-видимому, таких критериев нет. Подобные критерии, как обратимость адсорбции, характерная область температур для данного вида адсорбции, величины начальных теплот адсорбции ( )i наличие или отсутствие активационных барьеров, не однозначны [1> 24]. Треппнел [24] считает, что основное отличие физической адсорбции от химической заключается в том, что в последней имеют место электронные переходы между адсорбентом и адсорбатом. Этот критерий также не однозначен. [c.95]

    Существует другой процесс — так называемая хемосорбция,— который экспериментально можно отличить от физической адсорбции. Как правило, это значительно более медленный процесс, чем физическая адсорбция, который часто проявляется по увеличению скоростр реакции с ростом температуры. Хемосорбция обычно необратима. Процесс десорбции протекает очень медленно и требует более высоких температур. Это является следствием более высоких тепловых эффектов, которые сопровождают хемосорбцию они могут быть по порядку величины от 10 до 100 ккал/молъ — как раз в пределах тепловых эффектов химических реакций.  [c.537]

    Химическая адсорбция, или хемосорбция, отличается от физической адсорбции тем, что первая обусловлена силами химической природы между адсорбентолт и адсорбатом. Прп химической адсорбции может теряться индивидуальность исходных компоиеитов. Энергия взаимодействия при хемосорбции составляет 40— 400 кДж/моль, т. е. иа 1—2 порядка больше этой величины для физической адсорбции (10—40 кДж/моль). [c.125]

    Если хемосорбция пропсходи.т с малым тепловым эффектом, то это часто означает, что параллельно идет ироцесс, который трсбусг затраты энергии (например, диссоциация молекул адсорбата иа иоверхности). В то же вре.мя ие всегда можно провести четкую границу между физической и химической адсорбциями, особенно при слабой хемосорбции, так же как вообще между физическим и химическим взаимодействиями. Физическая адсорбция отличается универсальностью и малой специфичностью. Хемосорбция характеризуется специфичностью взаимодействия, приводящего обычно к образованию поверхностного химического соединения. Сильная хемосорбция часто необратима, вместо адсорбированного венхе- ства может десорбироваться другое соединение. [c.125]

    Различают физическую адсорбцию, обусловленную межмолеку-лярными взаимодействиями, и хемосорбцию, обусловленную химическими реакциями, не выходящими за пределы поверхностного слоя. Между физической адсорбцией, хемосорбцпей 11 типгппюй химической реакцией очень трудно провести четкие границы. Их можно отличить по значениям удельной теплоты процессов. [c.43]

    Во многих случаях бывает трудно решить, относится ли данное адсорбционное явление к ([)изической адсорбции или хемосорбции. Физическую адсорбцию можно определить как явление, при котором молекулы связываются с поверхностью адсорбента силами Ван-дер-Ваальса в их самом широком понимании, т, е, с учетом притяжения квадруполей, а также постоянных и наведенных диполей. Химическую адсорбцию можно представить как явление, при котором связь молекул с поверхностью осуществляется за счет обмена электронами или нх обобществления. Эти определения позволяют теоретически разграничить два обсуждаемых типа явлеиш , однако отличить их друг от друга иа практике представляет весьма трудную задачу. [c.20]

    Это так называемая хемосорбция-, она в отличие от физической адсорбции обусловлена действием сил химической связи, а не ван-дер-ваальсовых сил, и усиливается с нагреванием (в определенных пределах), [c.157]

    Так же как и для химических реакций, теплоты химической адсорбции могут быть весьма значительными — намного больше теплот конденсации. Еще одним принципиальным отличием химической адсорбции от физической является то, что в результате образования более прочных связей хемосорбированное вещество с трудом удаляется с поверхности адсорбента, причем десорбция может сопровождаться химическими превращениями. Так, например, при адсорбции кислорода на поверхности угля образуется настолько прочная связь, что при десорбции в газовую фазу выделяются оксиды углерода СО и СО2. Во многих случаях на поверхности адсорбента могут одновременно находиться физически и химически адсорбированные молекулы газа (например, при адсорбции СО2 на ЛЬОз). [c.318]

    Поверхность металлов и особенно сталей неоднородна как по химическому составу, так и по наличию на ней различных дефектов, свойственных поликристаллическим материалам границ зерен, вакансий, дислокаций и др. Эта неоднородность создает энергетическую диффе-ренцированность поверхности и в результате различные по адсорбционной активности участки. Поэтому одни ее части могут прочно блокировать хемосорбированные частицы ингибитора, на других он удерживается силами физической адсорбции, а третьи могут оставаться свободными от ингибитора. Значительной неравномерностью поверхности отличаются, например, нормализованные стали, границы раздела фаз которых обладают повышенной адсорбционной способностью вследствие повышенной свободной энергии. Вероятно, у нормализованных сталей молекулами ингибитора заполняются сначала наиболее активные центры поверхности, а потом наименее активные. У закаленных сталей все центры характеризуются сравнительно одинаковой и повышенной энергией, их заполнение молекулами ингибитора осуществляется практически одновременно и почти в 2 раза быстрее, чем у нормализованных сталей. [c.146]

    При химической адсорбции молекулы адсорбтнва, связанные с адсорбентом прочными химическими силами, естественно не могут перемещаться по поверхности последнего. В отличие от этого при физической адсорбции могут иметь место как нелокалнзо-ванная адсорбция, когда молекулы адсорбтнва способны передвигаться по поверхности адсорбента, так и локализованная адсорбция, когда молекулы адсорбтнва не могут, перемещаться по поверхности. Локализованная физическая адсорбция объясняется тем, что поверхность адсорбента состоит из различных атомов, ИОНОВ-или молекул, по разному-взаимодействующих с молекулами адсорбента. Чтобы молекулы адсорбтнва могли передвигаться по поверхности адсорбента, очевидно, они должны преодолевать определенные потенциальные барьеры. Однако очень часто преодоление таких барьеров, если они достаточно велики, невозможно. Понятно, что с повышением температуры локализованная физическая адсорбция может переходить в нелокализованную вследствие возрастания кинетической энергии молекул и их способности преодолевать потенциальный барьер. [c.82]

    В отличие от физической адсорбции при хемосорбции не сохраняется индивидуальность адсорбтива и адсорбента. При сближении молекул адсорбтива с поверхностью происходит нерераспреде.тюние электронов взаимодействующих компонентов с образованием химической связи. Если физическую адсорбцию можно сравнить с явлением конденсации, хемосорбционный процесс должен рассматриваться как химический процесс, протекающий на поверхности раздела фаз. [c.28]

    Экспериментально установлены два вида адсорбции физическая (молекулярная, Ван-дер-Ваальсова) и химическая (хемосорбция или хемисорб-ция). Физическая адсорбция состоит в закреплении молекул кислорода (в общем случае любого окислителя на поверхности металла, которое осуществляется за счет сил Ван-дер-Ваальса. Притяжение молекул кислорода объясняют тем, что поверхностные атомы металла, в отличие от расположенных внутри, находятся в неуравновешенном поле сил и поэтому проявляют тенденцию обрести недостающую связь с любым веществом вне твердого тела. [c.9]

    Наконец, сорбция может сопровождаться возникновением между сорбирующимся соединением и повелхностью прочной химической связи и, следовательно, образованием нового химического соединения на поверхности хемосорбция). Такой механизм осуществляется на природных и синтетических сорбентах с ионогенными и хелатообразующими группами. В отличие от физической адсорбции хемосорбция обратима не полностью. Использование синтетических сорбентов с ионогенными и хелатообразующими группами наиболее эффективно, и их широко применяют для селективного разделения макро- и мнкрокомпонентов и для группового и селективного концентрирования микрокомпонентов. [c.241]

    Хемоадсорбция - это адсорбционный процесс, в котором между поглощаемым компонентом и поверхностью твердого адсорбента действуют силы химического взаимодействия (в отличие от физической адсорбции, где действуют дисперсионные силы межмолекулярного взаимодействия). [c.215]

    Образующееся между адсорбентом и адсорбатом комплексное химическое соединение разрушается на стадии десорбции за счет повышения температуры. Хемосорбцию отличает от физической адсорбции величина теплоты адсорбции. Теплота хемоадсорбции достигает сотен килоджоулей на моль вещества, в то время как при физической адсорбции она равна 80-120 кДж/моль, т.е. соизмерима с теплотой конденсации. [c.215]

    Как уже указывалось в гл. 1, при хемосорбции происходит обобществление электронов молекулы адсорбата и поверхности твердого тела между адсорбированной молекулой и поверхностью твердого вещества образуется химическая, или валентная, связь. Вследствие этого толщина хемосорбированного слоя не может превышать толщину одного монослоя. Физическая адсорбция обусловлена действием сил Ван-дер-Ваальса, т. е. дисперсионных сил, на которые часто налагается действие кулонов-скнх сил. Хотя физическая адсорбция и может сопровождаться смещением электронов от поверхности или к поверхности адсорбента, истинного обобществления электронов в системе адсорбент—адсорбат при этом не происходит. Само собой разумеется, что резкой границы между этими видами адсорбции не существует сильное смещение электронов при физической адсорбции трудно отличить от обобществления электронов при хемосорбции. [c.284]

    Предельными случаями физической адсорбции являются адсорбция на непористых адсорбентах и адсорбция в микропорах, соизмеримых по размерам с адсорбируемыми молекулами. Адсорбция на единице поверхности в более крупных разновидностях пор не отличается существенно (до начала капиллярной конденсации) от адсорбции на ненористом адсорбенте той же химической природы. В этом случае наглядной молекулярной моделью адсорбции является заполнение поверхности адсорбента с образованием последовательных адсорбционных слоев. Важнейшим параметром, характеризующим адсорбционное равновесие, является величина поверхности адсорбента. [c.105]

    Существует ряд общепринятых экспериментальных критериев, по которым экспериментатор может отличить химическую адсорбцию от физической. Прежде всего — это теплота адсорбции. При химической адсорбции она существенно больше, чем при физической. Темпе менее тепловой эффект не может служить однозначным критерием. Если хеМосорбция сонровон<да-ется диссоциацией молекулы, то выделяющаяся при адсорбции энергия может быть очень мала, хотя хемосорбционные связи для отдельных атомов могут быть достаточно прочными. Далее, энергия связи для той формы хемосорбции, которая в электронной теории называется слабой формой (электрически нейтральная форма), может приближаться по величине к той, которая характерна для физической адсорбции. [c.114]

    Механи.зм процесса адсорбции отличается от механизма абсорбции, поскольку газообразный компонент поглощается не яшдким, а твердым поглотителем. Область применения процесса адсорбции довольно широка. Адсорбция применяется ири небольших концентрациях поглощаемого вещества, когда требуется достичь практически полного извлечения этого вещества из смеси. Процессы адсорбции применяются в промышленности при очистке газов, осветления растворов, извлечении летучих растворителей из смеси с воздухом или другими газами. Значение процессов адсорбции в носледнее время значительно возросло в связи с необходимостью получения особо чистых веществ. Равличают чисто физическую адсорбцию, нри которой молекулы адсорбируемого вещества и адсорбента взаимно притягиваются, и хемо сорбцию, когда между адсорбентол/ и поглощаемым веществом возникает химическая связь. [c.192]


Смотреть страницы где упоминается термин Отличие физической адсорбции от химической: [c.128]    [c.236]    [c.100]    [c.82]    [c.369]    [c.143]    [c.214]   
Смотреть главы в:

Адсорбенты и их свойства -> Отличие физической адсорбции от химической




ПОИСК





Смотрите так же термины и статьи:

Адсорбция физическая

Адсорбция физическая и химическая

Адсорбция химическая



© 2025 chem21.info Реклама на сайте