Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тетраэдр электронный

    Аналогичное рассмотрение можно провести для объяснения валентных углов в соединениях с неподеленными парами электронов, таких, как вода и аммиак. Пусть вода образуется из 0 9 и 2Н . Наиболее вероятное расположение четырех электронных пар иона должно быть таким, при котором они будут находиться в вершинах правильного тетраэдра. Электроны будут коррелировать свое движение таким образом, чтобы удерживать пары как можно дальше друг от друга. Участие двух электронных пар иона (У в образовании связей с 2Н приведет к уменьшению отталкивания между связями и неподеленными парами. Связанные пары сдвинутся при этом на угол меньший, чем тетраэдрический, в то время как непо-деленные пары раздвинутся набольший угол, как показано схематически на рио, [c.169]


    Эти комплексные ионы имеют форму тетраэдров, электронные орбитали атома бериллия в них находятся в состоянии 8р -гиб-ридизации. [c.289]

    Однако оказалось, что четыре электрона, подобно волнам, взаимодействуют друг с другом и образуют четыре средние связи, которые полностью эквивалентны и направлены к вершинам тетраэдра, как в тетраэдрическом атоме Вант-Гоффа — Ле Беля. [c.162]

    В образовании молекулы СН4 и иона НН принимают участие электроны 2.4- и 2р-орбиталей. Общее число электронов одинаково в обеих частицах. Именно вследствие 5р -гибридизации для них характерна одна и та же структура — правильного тетраэдра, несмотря на различие в механизме их образования. [c.54]

    III.9). Такая геометрическая фигура называется тетраэдром. Объяснить такое строение можно, предположив, что четыре пары электронов, окружающие атом углерода, стремятся находиться как можно дальше друг от друга, поскольку все они заряжены отрицательно. Связи направлены к вершинам тетраэдра и угол между ними равен 109,5°. [c.188]

    В производное кобальта(П) [41]. Исследования показали, что медь(П) и кобальт(П) конкурируют за одно и то же место в белке. Поскольку спектры соединений, содержащих кобальт(П), интерпретировать легче, чем спектры производных меди(П). авторы смогли прийти к выводу кобальт находится либо в центре искаженного тетраэдра, либо в пятикоординационном окружении. Интенсивная линия переноса заряда указывает на существование связи Со — SR. Отнесение всех линий спектра нативного медьсодержащего белка было проведено по аналогии. Существование порфириновых комплексов в ферментных системах можно установить по наличию в спектре характеристической полосы Соре в области 25 000 см . Эта полоса обусловлена связанным с лигандом переходом я -> я типа перехода с переносом заряда (см. гл. 5). В электронных спектрах порфириновых комплексов обнаружены также две другие полосы низкой интенсивности. Существование этих полос и их сдвиги при введении заместителей в циклы можно понять, проведя расчеты по методу МО [42]. Положения этих полос использованы для классификации цитохромов. [c.109]

    E молекуле Р4 атомы фосфора расположены в вершинах правильного тетраэдра. Каково состояние гибридизации электронных орбиталей фосфора  [c.30]

    Распределение электронов (строение электронного облака)-в молекулах воды можно представить себе как показано на рис. 23, Молекула воды состоит из трех атомных ядер и 10 элект ронов. Первая электронная пара (15-электроны) атома кислорода (показанная кружком) расположена на небольшом расстояний от ядра этого атома. Остальные четыре пары образуют электронные облака, вытянутые в направлении четырех вершин тетраэдра. Две из этих пар связаны с ядрами водородных атомов. Соответствующим вершинам тетраэдра можно приписать некоторый положительный заряд. Две другие пары придают своим вершинам отрицательный заряд. По крайней мере для молекул воды, находящихся в кристаллах льда, можно принять, что расстояние от ядра кислородного атома до всех вершин тетраэдра одинаково и составляет 0,99 А и что тетраэдр этот можно рассматривать как правильный. [c.80]


    Рассмотрим молекулу метана — простейшего органического соединения. Атом С находится в центре тетраэдра, атомы Н — в вершинах последнего. Все расстояния С—Н одинаковы, углы НСН равны 109 28. Для метана, как и для воды, молекулярные орбитали многоцентровые. Если записать их как линейные комбинации атомных орбиталей, надо учесть четыре 15-АО водородных атомов д, 5в, 5с и о и четыре внешние орбитали атома углерода 2 , 2р , 2ру и 2р , всего восемь АО (1 -электроны углерода сохраняют атомный характер). Молекулярных орбиталей образуется также восемь четыре связывающих, на которых в основном состоянии молекулы разместятся восемь валентных электронов и четыре разрыхляющие, свободные от электронов. Это обеспечивает высокую стабильность молекулы СН4. Все восемь молекулярных орбиталей метана можно изобразить одной формулой (для упрощения опустим коэффициенты при АО)  [c.99]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    Общеизвестно, что переходные металлы имеют -орбитали, которые лишь частично заполнены электронами. В растворе положительно заряженные ионы этих металлов могут легко соединяться с отрицательно заряженными ионами или другими небольшими электронодонорными химическими группами, называемыми лигандами, с образованием сложных ионов. Геометрия комплекса лиганд—металл зависит от природы иона металла. Комплекс может иметь структуру тетраэдра, плоского квадрата, тригональной бипирамиды или октаэдра. При обсуждении комплексов образованных ионами переходных металлов с лигандами, следует обращать внимание, во-первых, на природу связи лиганд — металл и, во-вторых, на геометрию образовавшегося комплекса. Именно эти факторы влияют на стабильность ионных комплексов. [c.351]

    При суперпозиции собственных функций этих электронов возникают четыре электронных облака (смешанные собственные функции), которые направлены к вершинам тетраэдра (см. рис. 8). [c.50]

    Конечно, отдельный гибрид не является сферическим, т. е. плотность распределения электронов имеет специфическую форму. В данном конкретном случае направления максимумов плотности электронов совпадают с направлениями на углы правильного тетраэдра. [c.98]

    Четыре лопасти - алектрона (заштрихованы) равноудалены от лигандов, лопасти г -электрона (светлые) наоравлены к ребрам тетраэдра -электрон испытывает меньшее отталкивание от лигандов, чем -электрон [c.339]

    Следовательно, одна пара электронов оказывав 1 ся несвязываю-щей и занимает одну из хр -гибридных орбиталей, направленных к вершине тетраэдра (рис. 50). [c.72]

    С увеличением числа несвязывающих электронов центрального атома изменяется пространственная конфигурация молекул (рис. 51). Так, молекула СН 4 имеет форму правильного тетраэдра с атомом угле- [c.72]

    У атомов Э (II) имеется несвязывающая электронная пара, поэтому коорд национным числам 3, 4, 5, 6 отвечают тригональная пирамида (тип / В3Е, см. рис. 51, 6), искаженный тетраэдр (тип АВ Е, см. [c.429]

    Таким образом, еслн устойчивость иона 5Ю в основном определяют а-связи, то устойчивость иона СЮ4 в существенной степени зависит и от л-связей. Так, в ионном КСЮ4 и ковалентном НСЮ число а-связей в хлорокнслородном тетраэдре одинаково. Но в НСЮ вследствие наличия связи О — Н доля участия электронов в л-связы-вании меньше  [c.433]

    В некоторых случаях необходимо рассматривать электроны, образующие связь, как части электро1пюго облака [97, 3. г1 0(1особные двигаться по молекулярным орбитам однако, когда мы имеем дело с размерами молекул предельных углеводородов, следует-считать, что эти электроны образуют связи, длина которых и углы между которыми воспроизводятся весьма точно [35]. Изменения длин связей и углов между связями в ненасыщенных молекулах малы, но псе же заметны. Большие успехи были достигнуты в области вьпгисления длин связех в сложных ароматических молекулах [12а]. При обсуждении объемных физических свойств углеводородных молекул в качестве первого приближения можно использовать старое представление об углеродном атоме как о тетраэдре с фиксированными по направлению и длине связями, причем этот атом может свободно вращаться, если он но связан с другими углеродными атомами, и лишен свободы вращения, если он связан с другими атомами. [c.227]


    Поэтому в обоих случаях электронные облака атома азота будут максимально удалены друг от друга при /) -гибрндиза-цин, когда нх оси направлены к вершинам тетраэдра. При этом в иоие все вершины тетраэдра заняты атомами подорода, [c.65]

    При образовании молекулы аммиака атомы водорода занимают только три нершины тетраэдра, а к четвертой вершине направлено электронное облако непо. еленной электронной пары атома азота. Это можно представить следующей схемой  [c.65]

    Парамагнетизм [Ы1С1, -свидетельствует о том, что структура никеля (II) с двумя неспаренными электронами сохранилась в комплексном ионе, и, следовательно, образование его связано с участием 454р -орбиталей- Пространственная структура [N 14 " — тетраэдр- [c.181]

    Метан, СН4, имеет четыре эквивалентных атома водорода, присоединенных к центральному атому углерода. Для соединения с четырьмя атомами водорода углероду приходится использовать все свои валентные орбитали. Путем гибридизации одной 2з- и трех 2р-орбиталей можно получить четыре эквивалентные 5р -гибридные орбитали (рис. 13-5). Каждая 5р -ги-бридная орбиталь имеет на одну четверть 5-характер и на три четверти р-характер. Все четыре хр -орбитали направлены к вершинам правильного тетраэдра, поэтому хр -орбитали иногда называют тетраэдрическими гибридами. В результате перекрывания каждой хр -гибридной орбитали с 1х-орбиталью атома водорода образуются четыре локализованные связывающие орбитали. Наилучщее перекрывание между и 1х-орбиталями получается при помещении четырех атомов водорода в вершины правильного тетраэдра, как это показано на рис. 13-6 (где изображен куб, чередующиеся вершины которого образуют вершины упоминаемого тетраэдра). В молекуле метана восемь валентных электронов (четыре от атома углерода и по одному от каждого из четырех атомов водорода), которые должны [c.555]

    Более того, квантовомеханические расчеты электронной структуры молекулы метана показали, нто тетраэдрическая конфигурация этой молекулы отвечает наибольшей, по сравнению со всёми другими возможными для нее конфигурациями, электронной энергии. И только благодаря тому, что этой конфигурации соответствует минимум энергии отталкивания ядер, в результате чего полная энергия молекулы (равная сумме ее электронной и ядерной энергий) оказывается все же минимальной, связи С—Н в метане направлены в углы тетраэдра. Таким образом, геометрия молекулы не обусловлена данным типом гибридизации. Последняя лишь устанавливает соответствие между взаимным расположением ядер и пространственным распределением электронной плотности. Но это не единственная, и даже не главная в современной теории строения молекул, функция концепции гибридизации. [c.209]

    Электронный спектр приносит особую пользу при определении координационного числа и расположения лигандов в металлофермен-тах. Электронный спектр карбоангидразы, в которой цинк(11) заменен на кобальт(П), показывает, что ион металла находится в центре искаженного тетраэдра [40]. Однако, когда проводятся такие исследования, необходимо особенно тщательно убедиться, что структура фермента не меняется при замене металла. Если фермент при этом остается активным, то можно до некоторой степени быть уверенным, что структура его не изменилась. В указанном примере последующий рентгеноструктурный анализ подтвердил, что лпганды группируются вокруг цинка(11) в виде искаженного тетраэдра. Проводя интерпертацию видимого спектра эритрокупреина — белка, содержащего медь 11), авторы работы [40] пришли к выводу, что в данной системе координируются по крайней мере четыре азотсодержащих донорных лиганда. [c.108]

    Выражения тетраэдр и т. п. указывают фигуру, к вершине которой направлены оси симметрии электронных облаков, если рассматриваемый атом помен1,ен в центре фигуры, которую образуют другие атомы. Иную конфигурацию образуют атомы, если в молекуле имеются электронные пары, не образующие связь — неподеленные пары. Так. молекула аммиака при тетраэдрическом расположении четырех электронных пар вокруг атома азота [c.69]

    Связп, образованные р-электронами, должны быть более прочными, так как р орб1гтали более вытянуты от ядра, чем 5-орбиталь, II сильнее перекрывают орбитали других атомов, образующих связь с углеродом. Однако, как мы знаем, все вязи атома углерода равноценны и направлены к вершинам тетраэдра (угол между ними составляет 109,5°). [c.85]

    В состав природных силикатов, кроме кремния и кислорода, входят различные другие элементы. Из них важнейшую роль играет алюминий, так как он входит в состав наиболее распространенных силикатов. Алюминий может содержаться в силикатах в двух формах. В одних он находится в виде катиона (силикаты алюминия), в других — входит в состав аниона (алюмосиликаты). В последнем случае (наиболее распространенном) атомы алюминия замещают собой атомы кремния в тетраэдрах 810 . При этом вследствие того, что у атома алюминия меньше валентных электронов, чем у атома кремния, число свободных отрицательных валентностей тетраэдра возрастает до пяти —АЮ ". При замещении кремния на алюминий увеличивается отрицательный заряд комплексного аниона на единицу в каждом тетраэдре, что приводит к увеличению и общего заряда катионов. Это можно видеть, например, сопоставляя состав кварца 8140в и альбита Ыа[А181з08]. Замена одного атома кремния на алюминий привела к введению эквивалентного количества катиона. [c.135]

    Реакцию десульфирования сернистых нефтяных фракций проводят в присутствии катализатора типа аСоО—6М0О3— сАЬОз. Опытно замечено, что активность катализатора проходит через максимум в зависимости от атомного отношения Со/Со4-+Мо. При нагреве твердого катализатора или под действием реакционной смеси происходит перераспределение электронов с созданием следующих ансамблей тетраэдров  [c.283]

    Ассоциация молекул и структура жидкостей и твердых тел. Молекулы таких жидкостей, как НР, вода и спирты, могут при образовании водородных связей выступать как акцепторы и доноры электронного заряда одновременно. В результате этого образуются димеры (НР)з, (Н.,0)2, (СНзОН)2, трнмеры, тетрамеры и т. д., пока тепловое движение не разрушит образовавшегося кольца или цепочки молекул. Когда тепловое движение понижено, через водородные связи создается кристаллическая структура. Известная аномалия плотности воды и льда обусловлена водородными связями в кристаллах льда каждая молекула воды связана с четырьмя соседями водородными связями через две неподеленные пары атома кислорода молекула образует две докорные Н-связи и через два атома Н —две акцепторные. Эти четыре связи направлены к вершинам тетраэдра. Образующаяся гексагональная решетка льда благодаря этому не плотная, а рыхлая, в ней большой объем пустот. При плавлении порядок, существующий в кристалле (дальний порядок), нарушается, часть молекул заполняет пустоты, и плотность жидкости оказывается выше плотности кристалла. Но в жидкости частично сохраняется льдообразная структура вокруг каждой молекулы (ближний порядок). Эта структура делает воду уникальным по свойствам растворителем. Ассоциация через водородные связи приводит к аномально высоким значениям диэлектрической проницаемости таких жидкостей, как НС , НзО, метанол и др. Водородные связи типа —СО...Н—N1 — [c.139]

    Молекулы, состоящие из пяти атомов.. Молекулы, в которых один атом одного элемента связан с четырьмя атомами другого элемента, образуются за счет взаимодействия 5- или р-электронов одного атома с 5- илн р-электронами четырех других атомов. В этих случаях молекулы имеют форму тетраэдра. Примерами являются молекулы метана СН4 и тетрафторида углерода F . В н,еитре тетраэдра располагается атом углерода, гибридные электронные облака которого перекрываются с 5-эле.ктрош1ыми облаками атомов водорода или р-электронньгми облаками атомов фтора, располагаюн ихся в вершинах тетраэдра. [c.61]

    По числу неспаренных электронов атом углерода образует четыре связи, атом азота—три, а атом кислорода образует две связи (рис. 46). В молекуле H3N одна из 5р -гибридных орбиталей занята несвязывающей электронной парой, в молекуле Н2О две орбитали заняты несвязывающими электронными парами. Поэтому если молекула СН4 имеет форму тетраэдра, то молекула H3N— форму тригональной пирамиды, а молекула Н2О — угловую форму. [c.68]

    Число локализованных электронных пар центрального атома и пространственная конфигурация некоторых молекул приведены в таблице К). Так, с помощью модели локализованных электронных пар нетрудно показать, что к молекулам типа АВ4, АВзЕ, АВ2Е2 (Е — несвязывающая электронная пара) относятся молекулы СН4, H3N и Н2О соответственно. Молекула СН4 имеет форму тетраэдра с атомом углерода в центре, а в молекуле H3N одна из вершин тетраэдра занята несвязывающей электронной парой, и молекула поэтому имеет форму тригональной пирамиды. В молекуле Н2О две вершины тетраэдра заняты электронными парами, а сама молекула имеет угловую форму. [c.68]

    У иона Поэтому ион МО тронных пар. Молекула же N14.) имеет несвязывающую (неподе-ленную) электронную пару (рис. 46) и, следовательно, может выступать в качестве донора электронной пары. В результате донорно-акцепторного взаимодействия иона Zп + и молекул NN,1 образуется комплексный ион Zn (N14.3)41 Вследствие -гибридизации орбиталей цинка этот ион имеет форму тетраэдра  [c.74]

    Связи, образуемые этими электронами, располагаются под у лом [09,5° по паправлению к вершинам тетраэдра (см. рис. 62). Поскольку каждый из атомов связан с четырьмя соседними, кремний имеет полимерную структуру. Его кристаллическая рететка координационная типа алмаза. [c.183]

    Размеры элементарных частиц минералов колеблются в широких пределах. Г. Ф. Фрейндлих указывает, что средние размеры частиц бентонита равны 1 X О, 1 X 0,01 мкм. По данным электронно-графического анализа частицы монтмориллонита таких пород, как гиляби, крымский кил, гумбрин и огланлинский бентонит, имеют размеры Ао = 517 0,02 А°, Во = 8,94 0,02 А°, Со = 9,95 0,06 А°, расстояние от кремния до кислорода в тетраэдре равно 1,84 А°. Алюмокислородные октаэдры имеют ребро и 2,98 А°. [c.12]

    До сих пор механизм гидролиза описывался таким образом, как если бы процесс протекал благодаря простым реакциям замещения. Однако, подобно тому как при гидролизе эфиров карбоновых кислот появляется тетраэдр>1ческий интермедиат (как уже указывалось), гидролиз фосфоэфиров проходит через пентакоор-динационный промежуточный продукт в хр -гибридном состоянии. Такой промежуточный продукт имеет геометрию, характерную для пяти электронных пар, расположенных вокруг центрального атома (фосфора), — геометрию тригональной бипирамиды. Дей- [c.122]

    Атом углерода должен был бы образовывать две связи, расположенные под прямым углом друг к другу, так как атомные р-облака взаимно перпендикулярны (см. рис. 6а). Однако, в действительности, углерод является четырехвалентным, и образуемые нм связи (например, в метане) направлены к вершинам тетраэдра. По Полингу, это объясняется тем, что 25- и 2р-состоянйя почти вырождены (т. е. энергия р-состояния лишь немногим больше энергии в-состояния), вследствие чего в момент образования связей оказывается возможной суперпозиция (смешивание, гибридизация) состояний углерода, и один из двух спаренных 25-электронов переходит на свободную 2р-орбиту. В результате у атома углерода оказывается четыре валентных электрона  [c.50]


Смотреть страницы где упоминается термин Тетраэдр электронный: [c.500]    [c.139]    [c.139]    [c.24]    [c.75]    [c.328]    [c.609]    [c.54]    [c.69]    [c.87]    [c.110]    [c.104]    [c.213]   
История стереохимии органических соединений (1966) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Тетраэдр



© 2025 chem21.info Реклама на сайте