Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление молекулярной диффузии

    Диффузия в порах будет приближаться к диффузии в газовой фазе, когда средняя длина свободного пробега диффундирующих молекул меньше радиуса пор (при определенных температуре и давлении). В этих условиях большое влияние на диффузию будут оказывать столкновения диффундирующих молекул. Коэффициент диффузии не зависит от радиуса пор, но обратно пропорционален давлению. Поскольку в нормальных условиях величина средней длины свободного пробега молекул имеет порядок 10- см, а под давлением 300 ат —порядок 10 см, в порах с радиусом > 10 см будет преобладать молекулярная диффузия. [c.284]


    Когда абсорбируемый растворимый в жидкости газ находится в смеси с нерастворимым газом, первый из них должен диффундировать через второй для достижения поверхности раздела фаз. В результате парциальное давление растворяемого газа у поверхности в общем случае ниже, чем в основной массе газовой фазы. Истинная картина процессов, протекающих в газовой фазе, не ясна, и, вероятно, столь же сложна, что и процессы в жидкости. Обычно употребляют термин газо-пленочное сопротивление , подразумевая под этим наличие у границы фазового раздела со стороны газа неподвижной пленки определенной толщины, через которую растворяемый газ переносится исключительно молекулярной диффузией, в то время как остальная масса газа имеет практически однородный состав. Это точно соответствует пленочной модели для описания процессов, протекающих в жидкой фазе. Однако для газовой фазы такая картина более правдоподобна, так как при перемещении газа относительно поверхности жидкости, несомненно, образуется пограничный слой аналогично слою, образующемуся при движении газа вдоль твердой поверхности. О последнем процессе имеется более подробная информация. Разумеется, можно считать большим упрощением, что погра- [c.146]

    Промывка осадка на фильтре основана на вытеснении фильтрата из пор ламинарными струями промывной жидкости и медленных процессах молекулярной диффузии и десорбции растворимого вещества. Для интенсификации промывки возможно осуществить вытеснение фильтрата перегретым паром промывной жидкости, а также промывной жидкостью, нагретой на несколько градусов выше температуры ее кипения при статическом давлении в зоне под осадком. Такая интенсификация допустима только в отдельных, особых случаях, поскольку наличие паровой фазы значительно осложняет работу в производственных условиях. [c.244]

    Эта величина связана с давлением газа Р соотношением п = Р/кТ. Таким образом, выражение (III.2) для коэффициента молекулярной диффузии в газах может быть записано в виде  [c.99]

    После удаления перегородок газы разной природы перемешиваются вследствие молекулярной диффузии и давление каждого газа в смеси будет уже парциальным давлением, причем Р>Р1. Энергия Гиббса каждого газа в смеси определится по уравнению  [c.125]

    Коэффициент молекулярной диффузии пропорционален температуре в степени 1,5, т. е. зависит от температуры очень мало. Изменение температуры, например, от 700 до 800 К увеличивает коэффициент диффузии в 1,22 раза, что соответствует энергии активации всего 2,2 ккал/моль (9 кДж/моль). Коэффициент диффузии обратно пропорционален давлению, молекулярной массе диффундирующего вещества в степени 1/2 и квадрату диаметра молекул. [c.138]


    Если реагенты или один из реагентов находится в жидкой фазе, то условия транспорта реагентов к внешней и внутренней поверхностям катализатора резко изменяются относительно газофазных реагентов. Для газов коэффициент диффузии имеет порядок 10 м , для молекулярной диффузии в жидкости коэффицент диффузии 10 5 см с — на четыре порядка меньше. Концентрация в жидкости на два порядка выше, чем в газе при атмосферном давлении, но скорость диффузии остается значительно меньшей. Для реакции первого порядка, протекающей во внутридиффузионной области, отношение скоростей при газофазной и жидкофазной реакциях имеет порядок  [c.155]

    При диффузионном горении кислород из воздуха проникает а зону горения в результате молекулярной диффузии, обусловленной разностью парциальных давлений кислорода в воздухе и в зоне горения. Прн кинетическом горении кислород и горючее вещество поступают в зону горения в смешанном состоянии. Так горят химически однородные (гомогенные) горючие системы, в которых молекулы кислорода находятся в тесном контакте с молекулами горючего вещества. В этом случае продолжительность смесеобразования (диффузии) значительно меньше времени, необходимого для протекания химической реакции горения, и скорость процесса горения практически определяется только скоростью реакции горения. [c.181]

    Абсорбция и адсорбция газов зависят от переноса молекул газа из общей массы к поверхности жидкости или твердого тела. В случае жидкости молекулы газа в дальнейшем диффундируют во всем объеме жидкости, тогда как на поверхности твердого тела они удерживаются физическими (Ван-дер-Ваальса) или химическими (хемосорбция) силами. Когда поверхность жидкости или твердого тела вступает в контакт с покоящимся газом, диффузия молекул газа протекает по законам молекулярной диффузии, и скорость ее зависит от температуры и давления газа и типа газовых молекул. Скорость переноса молекул Na в мольных единицах на единицу площади за единицу времени описывается законом Фика  [c.103]

    Длина колонки мало влияет на ВЭТТ, но влияет на критерии разделения К и Къ- Это подтверждается тем, что точки на кривой Я(а), полученные для разных длин колонки, легли почти одинаково. На рис. У.П приведена обобщенная кривая Я(а) для )азных скоростей потока азота, измеренных на выходе из колонки. 3 рис. V. 12 видно, что при малых скоростях (кривая 1) размывание хроматографической полосы больше, чем при более высоких скоростях (кривая 2) кривая I ввиду преобладания роли молекулярной диффузии в размывании располагается значительно выше кривой 2. Это согласуется с уравнением (1У.57), поскольку с увеличением длины колонки и скорости потока растет давление внутри колонки и ВЭТТ уменьшается за счет уменьшения коэффициента молекулярной диффузии во втором члене уравнения. Характер же обеих кривых одинаков наклон их в сторону оси абсцисс незначителен. Кроме того, с увеличением длины колонки увеличивается пропорционально число теоретических тарелок, а следовательно, и эффективность. [c.140]

    В проточных системах требующееся для разделения количество адсорбента зависит не только от таких факторов, как количество и состав газового сырья, заданная степень извлечения, адсорбционная мощность и селективность действия поглотителя, определяющиеся природой и способом приготовления адсорбента, температура и давление адсорбции, но и от скорости массопередачи к поверхности и внутрь частиц адсорбента путем молекулярной диффузии, конвективного и турбулентного переноса и степени использования внешней и внутренней поверхностей поглотителя. [c.178]

    Чем меньше давление, иначе говоря плотность среды, тем свободнее окажется перемещение молекул, тем скорее закончится процесс такого молекулярного смесеобразования, Весьма быстро молекулярная диффузия заканчивается в разреженном газе. В жидкостях, представляющих собой плотные, конденсированные среды, диффузия протекает очень замедленно. Чрезвычайно медленное проникновение молекул одного вещества в другое наблюдается в твердых телах. [c.215]

    Здесь Оэ имеет смысл суммарной массопроводности реального капиллярно-пористого тела — см. уравнение молекулярной диффузии Фика (1.17). Величина градиента массосодержания целевого компонента (концентрации) в уравнении (1.60) считается пропорциональной парциальному (при наличии инертной среды) или общему давлению. [c.39]

    Коэффициент эффективной диффузии Вд зависит не только от физико-химических свойств перемещающейся среды, температуры и общего давления, как это было с обычным коэффициентом молекулярной диффузии в газах, но в значительной степени от вида капиллярно-пористой структуры тела, что подтверждается характером зависимости элементарных видов переноса массы от размеров капилляров. [c.40]


    Кроме отмеченных ранее, здесь имеются трудности, связанные с перемешиванием жидкостей в каждом из объемов, разделенных мембраной. Перемешивание применяется, чтобы по возможности исключить внешнее сопротивление. Однако циркуляционные токи жидкости могут создавать на границе с мембраной локальные динамические давления, отличные от среднего давления в обоих объемах жидкости. Если эти локальные давления неодинаковы с двух сторон образца, то возникшая разность давлений приведет к появлению фильтрационного переноса, накладывающегося на эффект молекулярной диффузии. [c.129]

    Коэффициент молекулярной диффузии D представляет собой физическую константу и характеризует способность данного вещества проникать вследствие диффузии в неподвижную среду. Он зависит от природы диффундирующего вещества и среды, температуры и давления и не зависит от гидродинамических условий, в которых происходит процесс. Отметим, что коэффициент диффузии является аналогом коэффициента температуропроводности а. Таким образом, уравнение (3.46) по структуре аналогично дифференциальному уравнению переноса теплоты (3.40). [c.54]

    Увеличение давления снижает коэффициент молекулярной диффузии газов. Однако повышение температуры позволяет компенсировать этот отрицательный эффект давления. [c.68]

    Перемешивание путем молекулярной диффузии. В случае ламинарного течения перемешивание в потоке высокого давления происходит в результате процесса молекулярной взаимной диффу- [c.95]

    Скорость растворения (массопередачи) зависит от превалирующего механизма переноса вещества между жидкой и газообразной фазами. В неподвижной среде основным механизмом массо-переноса является очень медленный процесс молекулярной диффузии. В движущейся среде процесс массопереноса интенсифицируется за счет переноса массы в направлении движения среды (конвекция) в турбулентных потоках добавляется влияние пульсаций, вызывающих турбулентную диффузию. Поэтому в аппаратах для растворения газа в жидкости кроме повышения давления и снижения температуры жидкости применяют интенсивное перемешивание жидкости и газа путем барботажа воздуха через жидкость или с помощью так называемой струйной аэрации [66]. Воздух в жидкость во многих случаях вводится с помощью эжекторов, включенных непосредственно перед барботером или резервуаром для струйной аэрации. Но такая схема существенно снижает экономичность работы установки. [c.239]

    Молекулярная диффузия - диффузия, при которой диаметр пор превышает среднюю длину свободного пробега молекул (при атмосферном давлении она составляет около 10 м, при давлении 30 МПа-10 м). [c.680]

    Таким образом, коэффициент кнудсеновской диффузии пропорционален радиусу пор и не зависит от давления, в то время как коэффициент молекулярной диффузии не зависит от радиуса пор и обратно пропорционален давлению. Чем выше давление, тем при меньших размерах пор наступает область кнудсеновской диффузии. При давлении 10 МПа поток будет кнудсеновским для пор радиусом до 10 нм. [c.681]

    Для напорной флотации наиболее характерной является молекулярная диффузия газов, так как процессы во флотаторах отличаются значительной длительностью и сравнительно малыми градиентами давления. Кинетику дисперсного состава, счетной концентрации пузырьков и других характеристик газожидкостной смеси можно описать системой уравнений диффузионного роста, характеристики пересыщения раствора воздуха в воде и изменения счетной концентрации пузырьков [27, 49, [c.95]

    Увеличение давления в газовой среде влияет на активность так же, как и повышение концентрации реагентов. При возрастании давления может измениться порядок реакции. Коэффициент молекулярной диффузии, согласно уравнению [c.34]

    Смолистые вещества изнутри древесины двигаются к поверхности щепы по капиллярам, заполненным растворителем, в силу молекулярной диффузии, а также под действием осмотического давления, которое развивается в порах древесины вследствие проникновения к смолистым веществам паров бензина. [c.248]

    Скорость переноса вещества н фазе обратно пропорциональна сопротивлению сред1.(, которое складывается из сопротивлений, оказываемых основной массой среды, буферным и пограничным слоями. Часто оказывается удобным условно рассматривать все явление массоотдачи как происходящее за счет только молекулярной диффузии в области постоянного градиента концептрации или, в случае газов, постоянного градиента парциального давления. В этом случае вводится фиктивная толщина ламинарного слоя бе, в котором сонротивление диффузии принимается равным сумме сопротивлений реального ламинарного слоя, буферного слоя и турбулентной зоны.  [c.71]

    Обычно в условиях действующего контактного реактора при наиболее часто используемых катализаторах проходит кнудсенов-ская диффузия. Если давление в реакторе высокое, а поры катализатора имеют большой радиус, то может проходить молекулярная диффузия, но при радиусах пор < 10- см преобладать будет кнуд-сеновская диффузия. [c.284]

    Л. Н. Чекалов с сотр. [16] проанализировали влияние организации потоков в модуле плоскопараллельного типа на эффективность разделения. Они оценили влияние параметра С = = ехр(—18о/гО) при разделении воздуха с помощью модуля на основе асимметричной мембраны из поливинилтриметилсилана (ПВТМС) и пористой подложки из поливинилхлорида (ми-пласт) при перепаде давлений на мембране Ар 0,1 МПа. Коэффициент диффузии в пористом слое в первом приближении принимали равным коэффициенту молекулярной диффузии [c.182]

    Величина обратно пропорциональна давлению и возрастает с повышением температуры пропорционально чем больше масса и диаметр молекулы, тем труднее она диффундирует. Зависимость коэффициента молекулярной диффузии от свойств среды проявляется в основном в изменении эффективного сечения столкновений. Определение коэффициентов молекулярной диффузии в многокомпонентных смесях представляет собой чрезвычайно сложную задачу. При расчете химических процессов зависимостью коэффициентов диффузии от состава газовой смеси обычно можно пренебречь. Также несущественна в обычных условиях и зависимость ко фициеита диффузии от температуры степенная зависимость В Т) не идет ни в какое сравнение с экспоненциальной температурной зависимостью константы скорости реакции, и при перепадах температуры, набл] даемых в каталитических процессах, коэффициент молекулярвой-ди фузии остается практически постоянным. [c.99]

    При атмосферном давлении длина свободного пробега молекул X, 10 см, и для пор диаметром 100 А и менее протекает диффузия Кнудсена. Так как длина свободного пробега обратно пропорциональна давлению, то с его увеличением диаметр пор, при котором осуществляется диффузия Кнудсена, снижается. При 10 МПа (100 кгс/см ) X 10 см и для пор диаметром более 10 А осуществляется молекулярная диффузия. [c.141]

    Примечание. В формулах приняты следующие обозначения а— коэффициент температуропроводности, м-/ч -Х—коэффициент теплопроводности, Вт/Чм- С) ср-тепло-емкость газа при постоянном давлении, Дж/(кг °С) —средняя движущая сила теплопередачи, °С ДС—движущая спла массопередачи, выраженная в единицах концентрации (кг м , моль/м ) О—количество перенесенной массы, кг р — количество перенесенной теплоты, Дж Г—межфазная поверхность, эквивалентная поверхности теплообмена, м= т—время работы аппарата, с, ч р—плотность, кг/м" О—коэффициент молекулярной диффузии, м/с —общий коэффициент теплоцередачи, Вт/(м °С) а — частный коэффициент теплоотдачи, Вт/(м - С) гОр—линейная скорость потока, м/с I — характерный линейный размер, м —кинематический коэффициент вязкости газа, м с К—общий коэффициент массопередачи, кг/(м- ч) б—коэффициент массопередачи, м/ч [прп теплообмене—кг/(м ч)] —инерционно-вязкостный критерий (видоизмененный критерий Рейнольдса для газа). [c.90]

    Во введении было в общем рассмотрено влияние температуры Т, давления Р, относительной скорости движения фаз ю и молекулярной массы веществ М, передаваемых из одной фазы в другую, на коэффициенты массопередачи. Исследование кинетики обычно проводят при постоянстве Т и Р, для веществ определенной молекулярной массы, т. е. при М = onst. В таких условиях для данной бинарной системы при определенной растворимости и скорости растворения газового Компонента в жидкой фазе на величину коэф-< )ициента массопередачи могут влиять в общем следующие параметры коэффициенты молекулярной диффузии в газовой и в жид кой фазах скорости движения газа и жидкости ш, а также направления движения фаз относительно друг друга, влияющие [c.123]

    Зона небарботируемой жидкости I образуется между полотном тарелки и нижней границей открытых прорезей. Непосредственно через этот слой жидкости пар не проходит, поэтому массообмен в этой зоне малоэффективен. Он обусловлен главным образом молекулярной диффузией в слое жидкости, а также перемешиванием жидкости вследствие наличия градиента давления. [c.229]

    При переносе массы газа в направлении х компоненты А и В поступают пропорционально их парциальным давлениям рл и рв Таким образом, для компонента А общий поток Na представляет собой сумму доли компонента А в общей массе перенесенного газа NaPaIP (где Р —общее давление) и молекулярной диффузии, описываемой уравнением (П1.1) [c.106]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Давление не влияет па коэффициент массоотдачи в жидкой фазе. Коэффициент молекулярной диффузии в газовой фазё - а следовательно, и величина Рг уменьшаются с повышением давления соответственно снижается и коэффициент массопередачи. [c.55]

    Сделаем следующие предположения газ неподвижный, капля не движется относительно газа на межфазной поверхности жидкость — газ существует локальное термодинамическое равновесие давления в газовой и жидкой фазах равны и постоянны природный газ считается нейтральным. Это означает, что он не растворяется в жидкой фазе, в то время как возможен перенос воды и метанола через межфазную поверхность характерное время процесса тепломас-сопереноса в газовой фазе мало по сравнению с характерным временем в жидкой фазе. Это предположение позволяет сформулировать задачу в квази-стационарном приближении распределение концентраций компонентов и температуры в газе является стационарным и зависит только от расстояния г от центра капли, в то время как концентрации компонентов и температура в жидкой фазе изменяются со временем и однородны по объему капли природный газ рассматривается как один компонент (псевдогаз), свойства которого определяются по известным правилам усреднения для многокомпонентных смесей [9]. Мольная концентрация псевдогаза обозначается y Q, перенос массы компонентов в газе обусловлен механизмом молекулярной диффузии, характеризуемым бинарным коэффициентом диффузии D,-,,, перекрестными эффектами пренебрегаем. [c.539]


Смотреть страницы где упоминается термин Давление молекулярной диффузии: [c.111]    [c.265]    [c.144]    [c.151]    [c.271]    [c.71]    [c.136]    [c.85]    [c.449]    [c.8]    [c.49]    [c.451]    [c.512]    [c.35]    [c.578]   
Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Молекулярная диффузия при низких давлениях



© 2025 chem21.info Реклама на сайте