Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кулонометры химические

    Кулонометрический анализ обладает рядом существенных достоинств по сравнению с другими физико-химическими методами анализа надежное определение как малых, так и больших количеств вещества с высокой точностью и воспроизводимостью (погрешность 0,05—0,01%), отсутствие первичных стандартов, возможность использования малоустойчивых реагентов, быстрота. Потенциостатическая кулонометрия отличается, кроме того, высокой селективностью. [c.162]


    Кулонометрия основана на законах Фарадея, так что ее можно рассматривать как метод, обратный методу, предложенному М. Фарадеем для измерения количества электричества с помощью химического кулонометра. Между количеством вещества и количеством электричества существует следующая зависимость  [c.266]

    Применение электронных или электромеханических интеграторов, которые входят в комплект любого кулонометра. Химические кулонометры применяют для градуировки и контроля. Принцип действия электромеханического кулонометра заключается в том, что скорость вращения мотора, вырабатывающего постоянный ток в постоянном магнитном поле, в широ- [c.270]

    Электрохимические процессы имеют большое практическое значение. Так, теоретические законы электрохимии лежат в основе методов получения хлора, щелочей, ряда цветных и редких металлов, они реализуются также в процессах гальванотехники, при работе химических источников тока. В науке и технике широко используются электрохимические методы контроля и анализа потенциометрия, кондуктометрия, полярография, кулонометрия и т. д. [c.115]

    Интегрировать кривую ток — время можно механическим или электронным интегратором тока, включая его в электрическую цепь (непосредственно отсчитывает число кулонов, например, в приборе СХА-1,1) либо химическим кулонометром, являющимся электрохимической ячейкой, в которой протекает определенная электрохимическая реакция с 100%-ной эффективностью тока. [c.174]

    В ходе проведения кулонометрического анализа при контролируемом (постоянном) потенциале ток больше не остается неизменным, поэтому требуется проводить интегрирование по времени измеряемых значений мгновенного тока. Такое интегрирование можно осуществить с помощью кулонометра (химического, механического или электронного) или же расчетным путем (компьютерная обработка данных с помощью аналого-цифрового преобразования измеряемого тока). Точность кулонометрического анализа при постоянном потенциале в значительной степени определяется не точностью электронного интегратора, а погрешностью химической процедуры анализа в настоящее время вполне возможны измерения с погрешностью менее 0,5%. Концентрация вещества, установленная этим методом, меньше отличается от истинной концентрации определяемого вещества в растворе, чем при кулонометрическом анализе при постоянном токе. В этом случае поддержание постоянного потенциала исключает протекание побочных реакций, которые характерны для кулонометрии при постоянной силе тока в условиях изменяющегося (при изменении концентрации) потенциала. [c.737]


    За последние годы особое развитие получила непрямая кулонометрия, или кулонометрия с генерацией титрующего реагента. При этом методе измеряют число кулонов, израсходованное на окисление (или восстановление) химического соединения, предварительно добавляемого в избытке к раствору и способного количественно реагировать с определяемым веществом. Для этого можно использовать многие реакции, применяемые в практике обычного объемного анализа. [c.286]

    В кулонометрическом анализе требуются два рабочих электрода. Тот, на котором протекает необходимая электрохимическая реакция, называется генераторным (или рабочим), а второй — вспомогательным. Кроме того, для потенциостатической кулонометрии требуется электрод сравнения, относительно которого контролируется потенциал генераторного электрода. При кулонометрическом титровании, если применяются электрохимические методы индикации завершения химических реакций, следует дополнительно располагать соответствующими индикаторными электродами (см. гл. И, П1). [c.208]

    Включение при измерениях химического кулонометра (два электрода, опущенные в раствор подходящего электролита) в цепь последовательно с кулонометрической ячейкой. Тогда через кулонометр и ячейку проходят равные количества тока Q. Происходящие при этом взаимодействия веществ (осаждение, окисление-восстановление, выделение газа, изменение окраски раствора) используют для определения Q. [c.270]

    Настоящий раздел содержит задачи на так называемые классические методы количественного анализа — гравиметрический (весовой) и титриметрические (объемные). В этом разделе приведены задачи, в которых точка эквивалентности фиксируется при помощи индикаторов (т. е. по изменению цвета раствора или выпадению осадка). Задачи на титриметрические методы, в которых точка эквивалентности определяется с помощью физико-химических измерений (потенциометрическое титрование, амперометрическое и т. д.), а также задачи на кулонометрию и некоторые другие вынесены в раздел физико-химических методов анализа. [c.60]

    В то время как при потенциостатической кулонометрии определяемое вещество само вступает в электрохимическую реакцию на рабочем электроде, при кулонометрическом титровании при контролируемой силе тока в процессе химической реакции генерируется продукт, который затем вступает в реакцию с определяемым веществом. Таким образом, данный метод аналогичен классическому титрованию, за исключением того, ЧТО ТИТрант генерируют в процессе электролиза. При генерировании титранта отпадает необходимость применения установочных веществ и установки титра. При этом исключается также ошибка, связанная с разбавлением раствора в про- [c.151]

    При определении содержания добавочных компонентов допустима большая ошибка определения [а = 2. .. 5. ..10% (отн.)], особенно при определении небольших содержаний (<10" %). Вследствие таких требований к точности определения основных и добавочных компонентов для определения первых применяют преимущественно химические методы анализа, для вторых — физико-химические методы. Из химических методов большое применение, благодаря их быстроте, находят титриметрические методы с различными способами определения точки эквивалентности. При особо высоких требованиях к точности прибегают к гравиметрическим методам анализа. Среди физико-химических методов определения добавочных компонентов особенно широкое применение нашли электрохимические методы анализа (полярография, кулонометрия) и оптические (фотометрия). При определении не очень малых количеств элементов (>1%) применяют также различные варианты объемных методов анализа. [c.399]

    Более точный способ определения — это включение в цепь химического куло-нометра, т. е. второй электрохимической ячейки. В кулонометре выход по току должен быть равен 100% при условии уменьшения тока в течение электролиза в 100—500 раз. Необходимо также определить количество грамм-молей вещества, подвергшегося разложению. Тогда можно вычислить количество электриче- [c.63]

    Химические кулонометры позволяют измерять величины Q>10 к с точностью 0,1%- Электронные интеграторы дают точность от 1 до 0,1%. Планиметрия площади применяется для измерения малых количеств электричества 10 к) с точностью от 1 до 5%- [c.66]

    Потенциостаты. В потенциостатической кулонометрии в качестве источника стабилизированного напряжения обычно используются электронные приборы — потенциостаты. Основной задачей потенциостата является поддержание потенциала рабочего электрода на постоянном уровне при наличии электрических или химических изменений на электроде. Потенциостат поддерживает заданный потенциал электрода путем изменения величины (и знака) тока, проходящего через ячейку. [c.74]


    Схематическое устройство титрационного кулонометра приведено иа рис. 50, б. Анолит и католит здесь разделены для устранения химической реакции между ними. Контакт между электродами производится через пористую перегородку, впаянную в стенку внутреннего сосуда. Титрование образовавшегося в результате электролиза вещества происходит непосредственно во внутренней пробирке после извлечения электрода. [c.78]

    Количество затраченного электричества можно найти путем графического интегрирования функции (20.П). Во многих случаях все же удобнее пользоваться химическими кулонометрами, которые включают в цепь последовательно с электролитической ячейкой. Через кулонометр тогда проходит такое же количество электричества, какое проходит через электролитическую ячейку. Если кулонометр содержит, например, раствор нитрата серебра, на катоде его выделяется серебро, по массе которого с помощью формулы (20.7) вычисляют количество электричества <7 Пользуются также водородно-кислородными кулонометрами, в которых протекает электролиз воды. Смесь водорода и кислорода собирают, измеряют объем ее и с помощью формулы (20.8) вычисляют количество электричества. При этом следуег иметь в виду, что г = 4 и =3  [c.280]

    Закон Фарадея позволяет определить количество электричества в электрической цепи постоянного тока. Для этой цели применяют электролизеры, в которых отсутствуют побочные или вторичные химические реакции — кулонометры. [c.100]

    Для понимания процессов анодной пассивации и ингибирования растворения металлов, коррозионных процессов, ингибирования анодного окисления водорода и органического топлива чрезвычайно существенно знать свойства пассивирующей пленки. Ингибирующие пленки, состоящие из окислов металлов, обычно изучают различными методами, основанными на тонкопленочной катодной кулонометрии, химическом десорбировании и анализе, дифракции рентгеновских лучей (в случае тонких окисных пленок на никеле и железе), а также оптическими методами с использованием эллипсометра. Существенное преимущество последнего подхода в том, что он является методом in situ и легко применим к изучению гладких металлических поверхностей, на которых происходит анодное растворение, окисление или пассивация. В ряде случаев удается получить информацию не только о толщине пленки, но и о ее диэлектрических свойствах и о высокочастотной проводимости, и это помогает выяснить роль изменений электрических и физических свойств защитных или пассивирующих пленок. Особенный интерес представляет выяснение критических [c.400]

    Количество электричества, прошедшее через электролитическую ячейку, можно определить, построив кривую зависимости тока от времени оно равно плош,ади под кривой. Для этого пользуются градуированным гальванометром с малой постоянной времени или химическим кулономет-ром. Последний представляет собой электролитическую ячейку, согдиненную последовательно с экспериментальной ячейкой, так что через обе ячейки проходит одинаковое количество электричества. На катоде или аноде (или на обоих электродах) кулонометра химическая реакция должна протекать со 100%-ным выходом по току и должна быть такой, чтобы ее можно было легко и точно рассчитать. Осаждение серебра на катоде серебряного кулонометра (см.), анодное растворение серебра (см. число Фарадея) и реакция 2е + 2 2Г в йодном кулонометре (см.) — все они удовлетворяют этим требованиям. Широко распространен также такой удобный прибор, как медный кулонометр (см.). [c.83]

    Кулонометрическое титрование в аппаратурном оформлении сложнее, чем титрование с индикаторами или потенциометрическое титрование. Поэтому кулонометрия не находит щирокс-го применения в практике обычного химического анализа. Однако она используется в тех случаях, когда бывает необходимо определить микроколичества растворенных веществ, а также при проведении автоматического титрования. Приготовлен. и использование очень разбавленных титрованных растворов для объемного определения малых количеств растворенных веществ связано со значительными ошибками и неудобствами в работе. При кулонометрическом титровании необходимость применения таких титрованных растворов отпадает, так как определяемое вещество либо подвергается превращению непосредственно на электроде, J ибo титруется реагентом, генерируемым на одном из электродов в самой анализируемой пробе. В каждом из этих двух случаев определение ведется по израсходованному количеству электричества, измерение которого даже в малых дозах можно проводить с большой точностью. [c.286]

    Наряду с рассмотренными методами ИК спектроскопии и масс-спектрометрии идентификация хроматографически выделенных из смеси веществ может быть выполнена и другими методами. К ним относятся метод ядерного магнитного резонанса, кулонометрия, полярография, пламенная фотометрия, спектроскопия в ультрафиолетовой и видимой областях и, наконец, химические методы анализа, преимущественно микрометоды. [c.196]

    Кулонометрию используют при анализе тонких металлических покрытий, для определения растворимости, исследования кинетики химических реакций и определения образующихся при этом продуктов, установления строения комплексных соединений И Т. Д. Особое значение имеет кулонометрия при создании автотитраторов для кислотно-основного и окислительно-восстановительного титрования. Общий прогресс приборостроения позволяет обеЙ1ечить каждую лабораторию простыми и надежными кулонометрическими приборами, [c.252]

    Книга рассчитана на студентов химических специальностей униыерситетов. В ней изложены теоретические основы и практические методы количественного анализа, описаны приемы работы, аппаратура, приборы, методы вычисления результатов анализа. Значительное место отведено современным методам анализа физическим, кинетическим (каталитическим), фотометрии, полярографии, потен-циометрии, амперометрическому титрованию, кулонометрии, ионному обмену, распределительной и газовой хроматографии, соосажденню и гомогенному осаждению, экстракции органическими растворителями, комплексонометрическому титрованию. [c.2]

    Принцип метода. В методе используется сохранение заданной силы тока электролиза э постоянной в течение всего процесса анализа и измерение продолжительности электролиза Тэ- Но так как в отличие от прямой амперостатической кулонометрии в данном случае метод применяется для определения растворенных веществ, в процессе электролиза невозможно одновременное сохранение и силы тока, и потенциала электрода постоянными. Поэтому, как было указано ранее, при работе с постоянной силой тока электролиза из-за изменения потенциала электрода неизбежны побочные электрохимические процессы и не обеспечивается 100%-ная эффективность тока для необходимой электродной реакции. Для предупреждения затраты электричества на побочные электрохимические реакции в испытуемый раствор вносят электроактивное вещество (вспомогательный реагент), которое с самого начала или после некоторого периода электролиза (в зависимости от условий) участвует в электрохимической реакции. При этом необходимо, чтобы продукт реакции (промежуточный реагент) был способен количественно химически взаимодействовать с определяемым веществом. [c.198]

    Для контроля чистоты веществ можно использовать методы классического химического анализа. Например, иодометрически можно определять медь примерно до 10 г/мл раствора. Вообще же для количественного определения примесей в ос. ч. веществах требуются новейшие методы, отличающиеся высокой чувствительностью и селективностью а) фотометрические (колориметрия, спектрофотометрия, пламенная фотометрия) б) флуоресцентные (фосфоресценция, флуоресценция , катодо- и хемилюминесценция и др.) в) электрометрические (полярография, особенно осциллографическая, по-тенциометрия, кондуктометрия, кулонометрия и др.) г) спектральные, обладающие высокой чувствительностью, но малой точностью д )масс-спектрографические , е) радиохимические (активационный анализ, изотопное разбавление и др.) ж) электрофизические (измерение-проводимости, эффекта Холла и др.) з) концентрирование микропримесей в малых объемах (экстракцией, со-осаждени-гм, хроматографически, ионным обменом, электролизом, зонной плавкой и т. д.) с последующим определением их разными способами. [c.319]

    Все приведенные примеры показывают, что при электролизе, независимо от того, электропревращается илн непосредственно определяемое вещество или вспомогательный реагент, на каждый заряд одного иона расходуется один электрон. Таким образом, в кулонометрии реагентом— своего рода титрантом — фактически является электрон, а в косвенной кулонометрии, кроме того, происходит. химическая реакция. [c.200]

    В кулонометрическом титровании нет необходимости прекращать электролиз в момент завершения химической реакции (кроме случая применения цветных индикаторов и кулонометров), так как нри использовании различных инструментальных методов индикации конечной точки обычно этот момент устанавливают графически из кривых титрования. Однако в некоторых случаях целесообразно проводить электролиз до достижения заранее установленного значения потенциала индикаторного электрода (при потенциометрическом методе индикащш конечной точки) или до появления или падения индикаторного тока практически до нуля (при амперометрнческой индикации конечной точки). Необходимость в таких приемах возникает при проведении предэлектролиза. [c.216]

    Электрохимические (кулоно-, кондукто-, потенциометрические, полярографические) методы могут быть успешно применены для определения содержания воды. Наиболее распространены кулонометрические и меньше кондуктометрические. Кулонометрические методы основаны на способности чувствительного к воде реагента образовываться на электроде ячейки, а также на измерении продуктов реакции при электролизе. В этом случае массу воды определяют по количеству тока, пошедшего на электрохимические процессы в соответствии с законом Фарадея. Реально применяют метод кулонометрии, основанный на взаимодействии воды с тонкой пленкой пятиокиси фосфора. Механизм процесса заключается в электрохимическом разложении образовавшейся метафосфорной кислоты. При электролизе опять образуется исходная пятиокись фосфора, поэтому химический и электрохимический процессы протекают совместно и воду можно определять непрерывно с высокой разрешающей способностью и чувствительностью (до 0,001 %). Основным недостатком метода является необходимость применения для экстракции воды предварительно осущенного инертного газа. [c.305]

    В кулонометрии электролиз проводится или при неизменяющемся потенциале рабочего электрода — потенциостатический метод, или при неизменяющемся токе через электрод — гальваностатиче-ский метод. Распространенным вариантом гальваностатического метода является кулонометрическое титрование. В этом случае при электролизе получают (электрогенерируют) вещество А, которое служит реактивом для определения вещества В, т. е. вступает с ним в химическую реакцию А + В->-АВ. Определив количество электричества, израсходованное на получение вещества А, можно вычислить массу вещества В, находящегося в анализируемой пробе. Кулонометрическое титрование аналогично объемному титрованию. [c.61]

    Методы прямой кулонометрии характеризуются тем что определяемое вещество претерпевает электрохи мическое превращение — окисление или восстановле ние—непосредственно на одном из электродов, а по бочные химические реакции в растворе не происходят [c.512]

    В книге описаны теоретические основы кулонометрии как современ ного, быстроразвивающегося и перспективного физико-химического метода анализа, показаны многочисленные приложения этого метода к решению практических задач аналитической химии, а также описана применяемая аппаратура, вполне доступна как научно-исследовательским, так и заводским и цеховым лабораториям. [c.343]

    КУЛОНОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на измерении кол-ва электричества Q, прошедшего через. электролизер при электрохим. окислении или восстановлении в-ва. Согласно Фарадея закону, Q связано с кoл-вo f электрохимически превращаемого в-ва Р ур-нием Р = 0 /96500, где А — электрохим. эквивалент этого в-ва. Различают прямую К., когда в электродной р-ции участвует только определяемое в-во, к-рое электрохимически активно до конца электролиза, и косвенную К., или кулонометрич. титрование (К. т.), при к-рой, независимо от электрохим. активности определяемого в-ва, в электролизер вводят электрохимически активный вспомогат. реактив, продукт превращения к-рого (кулонометрич. титрант) химически взаимодействует с определяемым в-вом. При определении к-т и оснований вспомогат. реактив не вводят, т. к. соответствующие титранты (ОН иН + ) образуются при электролизе воды в присут. инертных электролитов, обеспечивающих электрич. проводимость р-ра. [c.292]

    От Ф.-х. м. а. отличают классич. . химические методы анализа, аналит. сигналом в к-рых служит масса и объем (гравиметрия, титриметрия с визуальной индикацией точки эквивалентности). За исключением кулонометрии, во всех Ф.-х. м. а. необходима градуировка по стандартным образцам, синт. образцам сравнения или др. способами. Ф.-х. м. а. иногда нримеп. для качеств, анализа при этом достаточно установить наличие аналит. сигнала, характерного для обнаруживаемого компонента. Ф.-х. м. а. широко использ. для аналит. контроля произ-ва, хотя эти методы часто уступают по производительности, зкспрессности, пределам обнаружения пли др. параметрам физическим методам анализа. Четкого деления методов на хим., физ. и физ.-хим. не существует. [c.620]

    Кулонометрия является абсолютным методом, ее применяют пе только для определения массы вещества, участвующего в электрохимической и химической реакциях, но и для решения других задач. Нанример, для исследования стехиометрии, кинетики реакций, протекающих в жидкой, твердой, газовой фазах, идентификации образующихся нри этом продуктов, а также для изучения состава малорастворимых, комплексных соединений, разделения металлов и, наконец, в фазовом анализе. Особо важным является исиользование этого метода в различных отраслях иромыш-ленности, нанример для изучения коррозии металлов или изделий из них. [c.120]


Смотреть страницы где упоминается термин Кулонометры химические: [c.144]    [c.411]    [c.2]    [c.191]    [c.192]    [c.204]    [c.211]    [c.6]    [c.35]    [c.73]    [c.620]    [c.402]    [c.121]   
Основы аналитической химии Часть 2 (1979) -- [ c.2 , c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Кулонометрия

Кулонометры



© 2024 chem21.info Реклама на сайте