Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция органических соединений кинетика

    Если процесс восстановления протекает на катоде с малым перенапряжением выделения водорода, первая стадия процесса не должна определять кинетику суммарного процесса, а потенциал катода можно считать близким к равновесному. В этом случае строение двойного электрического слоя и адсорбция поверхностноактивных веществ не будут сказываться на кинетике процесса, и определять закономерности последней будет замедленность химической стадии восстановления органического вещества атомарным водородом. Если же процесс протекает на катоде с высоким перенапряжением выделения водорода, определять кинетику восстановления будет замедленность первой электрохимической стадии, и кинетические закономерности восстановления не будут отличаться от наблюдаемых для перенапряжения выделения водорода на этом металле. Плотность тока в этом случае не будет существенно зависеть от концентрации органического вещества в электролите. Подобные кинетические закономерности наблюдаются также при использовании, так называемых, переносчиков водорода, каталитических добавок ионов металлов переменной валентности, таких как титан, ванадий, хром, церий и т. д. Подобные добавки применяют в тех случаях, когда электродный процесс восстановления органического соединения требует значительно большего перенапряжения, чем восстановление иона металла переменной валентности, например в то время как восстановление органического вещества происходит без затруднений в растворе под действием который окисляется до Естественно, что кинетика суммарного процесса восстановления органического соединения в этом случае будет определяться замедленностью процесса восстановления ионов металла переменной валентности. [c.445]


    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. Значительный интерес представляют также электрохимические системы, в которых на поверхности электрода при постоянном потенциале возможно одновременное протекание нескольких параллельных электродных процессов. На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.298]

    При выборе формы изложения фактического материала трудно найти какой-либо единый подход. В опубликованном ранее обзоре [14] основной упор был сделан на истории изменения представлений о природе активных центров, в данной же главе мы попытаемся осветить следующие четыре момента. Прежде всего мы рассмотрим различные типы реакционноспособных промежуточных соединений в наиболее характерных превращениях углеводородов и приведем данные по поведению этих промежуточных соединений в модельных гомогенных системах. Далее мы обсудим вопрос о природе активных центров, и с этой целью обсудим предположения, сделанные при изучении структуры цеолитов, после чего дадим краткую характеристику кинетики и возможной роли динамических факторов в диффузии и адсорбции. В заключение мы вновь вернемся к основным группам реакций и рассмотрим те промежуточные органические соединения и способы их превращения, которые могли бы считаться наиболее вероятными для этих реакций. Помимо этого, мы кратко охарактеризуем экспериментальные методы, применяемые для выявления конкретных механизмов. [c.7]


    Кинетика адсорбции органических веществ на Р1-электродах различной дисперсности удовлетворительно описывается соотношениями, отвечающими адсорбции на равномерно-неоднородной поверхности. Такие закономерности были установлены для многих кислородсодержащих органических соединений, в ряде работ для углеводородов, а в последние годы и для новых классов органических соединений, включающих связи С—М, С—С1 и др. [c.104]

    В последнем разделе обсуждаются особенности других возможных стадий электродных процессов — химических и образования новой фазы, а также многостадийные и параллельные процессы и роль явлений пассивности и адсорбции органических соединений в электрохимической кинетике. В этом разделе отражены только самые основные особенности кинетики сложных процессов и приведено ограниченное число примеров практически важных электрохимических реакций. [c.3]

    Изложенные представления об адсорбции органических соединений и влиянии их на кинетику электроосаждения металлов имеют недостатки. В большинстве исследований не учитывается  [c.383]

    VI. КИНЕТИКА АДСОРБЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.247]

    Кинетика адсорбции органических соединении [c.296]

    А. Н. Фрумкиным и В. И. Мелик-Гайказяном на основе измерений дифференциальной емкости при различных частотах переменного тока был развит и экспериментально проверен. метод изучения кинетики адсорбции органических соединений. [c.166]

    Кроме того, при разработке и исследовании летучих ингибиторов приходится одновременно решать ряд научных проблем, имеющих важное значение не только для процессов ингибирования, но и для общей теории коррозии, пассивирования, электрохимии и физической химии. При изучении механизма действия летучих ингибиторов следует устанавливать основные закономерности испарения и адсорбции органических соединений, влияние, оказываемое ингибиторами на кинетику электрохимических реакций, связи между составом и структурой соединений, с одной стороны, и их защитными свойствами, с д)ру-гой. Поскольку к ним, как правило, относятся соединения с упругостью паров, не превышающей 10 -10 мм рт. ст., обычно применяемые методы исследования оказываются неприемлемыми и приходится изыскивать новые. [c.5]

    СВЯЗЬ ЧАСТОТНОЙ ЗАВИСИМОСТИ ДИФФЕРЕНЦИАЛЬНОЙ ЕМКОСТИ С КИНЕТИКОЙ АДСОРБЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.44]

    Скорости весьма многообразных процессов коррозии подчиняются закономерностям кинетики электродных процессов. В последние годы исследования в этой области электрохимии приве.чи к важным практическим результатам и разработке мер по борьбе с коррозией. В частности, используются ингибиторы (замедлители) коррозии, которые представляют собой вещества, хорошо адсорбирующиеся на металле. Обычно это органические соединения, растворимые в воде. Адсорбция молекул таких веществ на поверхности металла приводит как к блокированию наиболее активных участков, так и к изменению электрических потенциалов. Это способствует замедлению коррозии. [c.273]

    Научный подход к подготовке питьевой воды требует изучения технологических свойств планктонного гумуса, кинетики окисления органолептически активных органических соединений и их смесей, появляющихся в результате сброса в водоемы стоков химической, нефте- и газохимической промышленности, условий адсорбции органолептически активных веществ и их смесей, обесцвечивания н дезодорации воды при помощи ионообменников, а также разработки методов удаления из воды канцерогенных веществ,,пестицидов, гербицидов, фунгицидов и других химических средств защиты растений от вредителей. [c.527]

    Влияние строения двойного электрического слоя на кинетику электродного процесса впервые количественно было рассмотрено А. Н. Фрумкиным [1] на примере реакции разряда ионов водорода. Фрумкин показал также необходимость учета адсорбции реагирующих частиц на электроде. Возможность влияния адсорбции органических соединений на ход кривых зависимости силы тока (/) от потенциала (Е) отметил П. Герасименко [2] еще в 1929 г. Впервые на связь между адсорбцией органических веществ и кинетикой их электрохимического восстановления указал Л. И. Антропов [3, 4]. Роль поверхности катода и адсорбции восстанавливающегося вещества при электрохимическом восстановлении ароматических нитросоединений была рассмотрена в работах Н. А. Изгарышева и М. Я. Фиошина [5, 6]. [c.23]

    Мы сознательно акцентируем внимание на механизме влияния органических соединений, так как один из новых эффективных методов защиты металлов от атмосферной коррозии основан на принципе использования органических соединений (летучие ингибиторы). Органические соединения также широко используются в технологии противокоррозионной защиты (очистка от окалины и продуктов коррозии, подготовка поверхности под нанесение покрытий и т. д.). Изучение процессов адсорбции ингибиторов, и в особенности летучих, и их влияния на кинетику электродных реакций приобретает поэтому исключительное значение. В связи с последним нам представляются интересными предпринятые за последнее время попытки рассмотреть некоторые вопросы коррозии с учетом потенциалов нулевого заряда металла. [c.23]


    Развитие электрохимической кинетики стало возможным в значительной мере в результате успехов, достигнутых в познании строения границы раздела электрод — раствор. Теория двойного электрического слоя начала развиваться значительно раньше современного направления электрохимической кинетики и к моменту возникновения последнего достигла уже известного совершенства благодаря работам Г. Гельмгольца, Ж- Гуи, Д. Чапмена и О. Штерна. Фрумкин развил термодинамическую теорию поверхностных явлений на границе раздела фаз и теорию двойного слоя при адсорбции органических соединений (1919—1926) и ввел в электрохимию понятие о потенциале нулевого заряда двойного слоя, который является фундаментальной характеристикой металла (1928). В 1933 г. Фрумкин показал, что учет строения двойного слоя необходим для понимания кинетики электродных процессов, так как поле двойного слоя влияет на концентрацию реагирующего вещества у поверхности электрода и на энергию активации процесса. Так была установлена количественная взаимосвязь между двумя главными направлениями современной электрохимии и начался современный этап развития кинетики электродных процессов. [c.11]

    В изложенной схеме не учитывается участие ионов раствора в оксидном слое. Такое участие становится ярко выраженным при высоких анодных потенциалах ,>1,6 В, где анодная оксидная пленка на платиновых металлах формируется с участием кислорода, ионов фона и продуктов их разряда, причем компоненты раствора включаются в пленку необратимо. Кислородные пленки на платине при потенциалах окисления выше 1,6 В включают в свой состав три формы хемосор-бированного кислорода, которые отличаются друг от друга кинетикой образования и восстановления, а также энергией связи с поверхностью. Характерно, что зависимость адсорбции анионов и катионов от потенциала в области высоких анодных потенциалов носит полиэкстре-мальный характер, и часто максимуму адсорбции катионов отвечает минимум адсорбции анионов и наоборот. На глубоко окисленных платиновых металлах обнаружена адсорбция органических соединений различных классов (Л. А. Миркинд, М. Я. Фиошин). [c.372]

    Наряду с исследованиями в области кинетики и 1механиз-ма анодных реакций, адсорбции органических соединений в широком диапазоне положительных потенциалов, большое внимание в литературе уделяется вопросам разработки эффективных методов электрохимического синтеза на основе указанного класса реакций. [c.273]

    В носледние годы значительно возрос интерес исследователей к вопросам адсорбции и электроокисления органических соединений на твердых электродах. В проводимых работах основное внимание уделяется а) природе потенциалов, возникающих в растворах органических веществ б) механизму и кинетике адсорбции органических соединений в) механизму электроокисления органических веществ г) поискам наиболее активных электродов и оптимальных условий их использования. [c.169]

    В раздел HI включены доклады, в которых рассматриваются вопросы адсорбции на границе металл — электролит и ее влияние на кинетику электрохимических реакций. Доклад Р. Парсонса (Англия) представляет собой обзор современного состояния вопроса о влиянии электрического поля на адсорбцию органических соединений. Р. Парсонс высказывает предположение о желательности замены адсорбционной изотермы Лэнгмюра на изотерму нелокализованной адсорбции на поверхности твердого тела, выведенную надавно Гельфандом, Фришем и Лебовицем. В сборник включены выступления А. Н. Фрумкина и Б. Б. Дамаскина, в которых содержатся возражения Р. Парсонсу. [c.5]

    Сборник посвящен наиболее важным разделам электрохимии органических соединений кинетике электродных процессов, электросинтезу, влиянию природы металла электрода на процессы адсорбции, электроокисления и электровосстановленип органических веществ, полярографии. [c.2]

    Рассмотрены основные работы 1962—1967 гг. по электрохимическому окислению органических соединений различных классов (предельные спирты, альдегиды, кислоты, окись угледора, углеводороды), а также направления поиска каталитически активных электродов для проведения таких реакций. Затрагиваются вопросы механизма адсорбции различных веществ, влияние адсорбции на структуру двойного слоя, влияние адсорбции водорода и кислорода на адсорбцию органических соединений, зависимость адсорбции от потенциала и pH раствора, концентрации адсорбата, кинетики адсорбции органических соединений на платиновых металлах. Далее обсуждаются методы исследования кинетики реакций электроокисления, а также основные критерии, позволяющие сделать выбор между электрохимическими и химическими механизмами окисления. Таблица 1. Иллюстсаций 11. Библ. 251 назв. [c.383]

    В этом разделе рассмотрены закономерности адсорбции органических веществ в области сравнительно невысоких анодных потенциалов до посадки кислорода в значительных количествах. Внимание преимущественно уделено адсорбционным явлениям в. водных растворах простых органических соединений (углеводородов, спиртов, альдегидов и т. п. с небольшим числом углеродных атомов в молекуле), поокольку эти процессы наиболее изучены и на их примере можно осветить практически все наиболее важные вопросы механизма и кинетики адсорбции. Следует подчеркнуть, что рассматриваемые процессы характеризуются большой сложностью их кинетика, а иногда и механизм сильно зависят от условий приготовления электрода-катализатора, от предварительной обработки электрода, от состава электролита фона и других фа1кторов. Эти особенности часто являются причиной расхождений в экопериментальных данных, полученных разными, и сс л ед ов ате л я м и. [c.98]

    Очистка воды от молекулярно растворенных соединений, представленных в основном органическими соединениями производится, как правило, с использованием активных углей. Количество идентифицированных органических соединений в природных водах к настоящему моменту достигает 1000, но оно не превышает 10-15 % общего количества примесей. Обработка воды активным углем из-за универсальности его действия является наиболее перспективным методом очистки от органических соединений. Для обработки питьевой воды в промышленных масштабах в нашей стране используются в основном древесные угли типа БАУ, ДАК, ОУ. В настоящее время для данной цели разрешено использовать также угли серии АГ, такие, как АГ-3 и АГ-5. Активные угли АГ, БАУ и ДАК относятся к гранулированным сорбентам, а ОУ к порошкообразным. Несмотря на то, что кинетика процесса адсорбции на порошкообразных активных углях (ПАУ) выше по сравнению с процессами на гранулированных углях, удельный вес порошкообразных углей в технологии обработки воды неуклонно снижается. Это объясняется большим удобством работы с гранулированными активными углями (ГАУ) при адсорбции, а также большей простотой их регенеращ1и. Адсорбционная обработка, как метод, позволяющий осуществить глубокую очистку воды, используется, как правило, в совоьсупно-сти с методами реагентной обработки, что объясняется экономическими вьи-одами комплексной обработки. Такой подход обусловлен также тем, что реальные загрязненные воды представляют собой не чистый стабильный раствор, а являются гетерогенной смесью растворенных, коллоидных и взвешенных веществ [c.551]

    Изучение адсорбщ1и в электродных процессах методом меченых атомов было связано главным образом с определением равновесной адсорбции на существенно поляризуемом электроде (ср. с ртутью) и определением адсорбции реагентов и промежуточных продуктов в электродных процессах, где фарадеевская реакция протекает со зна чительной скоростью (например, в электроокислении низкомолеку лярных органических соединений на благородных металлах). При изу чении механизма различных процессов (см. ниже) применялись также нерадиоактивные изотопы, например [277] и 0 [228, 278]. Ло сев [281] радиоактивным методом непосредственно определил скорость обмена на амальгамных электродах (см. ниже). Для оценки относительного изотопного эффекта в кинетике выделения водорода наряду с дейтерием использовался тритий [279, 280]. [c.499]

    К сожалению, бо-лынинство фирм, которые изготавливают ингибиторы коррозии, не сообщают их состав, поэтому подчас трудно составить себе нредставление о том, какие химические соединения или функциональные группы в сложных соединениях или смесях выполняют защитные функции. Знать же это совершенно необходимо для понимания механизма защиты металлов ингибиторами. В связи с этим рассмотрение пассивирующих и защитных свойств различных неорганических и органических соединений представляет большой интерес. Не менее важным является установление общих закономерностей защиты металлов от коррозии ингибиторами характер адсорбции, в.лияние ингибиторов на электрохимическую кинетику, связь между составом и структурой химических соединений и их защитными свойствами, влияние ингибиторов на поведение многоэлектродных систем, методы определения защитных свойств ингибиторов, возможность развития локальной коррозии в присутствии ингибиторов. Рассмотрение этих вопросов, несомненно, облегчит труд исследователей, занимающихся поисками новых ингибиторов, а также труд инженерных работников, использующих ингибиторы коррозии в технике. [c.6]


Смотреть страницы где упоминается термин Адсорбция органических соединений кинетика: [c.12]    [c.428]    [c.135]    [c.107]    [c.45]    [c.6]   
Современные аспекты электрохимии (1967) -- [ c.247 , c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция кинетика

Адсорбция органических соединений



© 2025 chem21.info Реклама на сайте