Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ингибиторов процессов

    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]


    Ингибиторы коррозии подразделяются в зависимости от конкретных условий их применения на ингибиторы кислотной коррозии, замедлители коррозии в нейтральных и щелочных растворах и замедлители атмосферной коррозии (так называемые летучие ингибиторы). Механизм их действия, так или иначе связанный с адсорбцией ингибитора на корродирующей поверхности, далеко не одинаков и в общем случае может быть понят как следствие задержки парциальных электрохимических процессов, протекающих при саморастворении металлов. В этом отношении функции ингибиторов коррозии не отличаются от той роли, какую выполняют другие известные замедлители обычных химических реакций. [c.259]

    К трудно окисляющимся веществам относятся ингибиторы кислотного травления, а также ОП-7 (ОП-10) и каптакс. Следует учитывать, однако, что концентрация ингибиторов в процессе очистки резко снижается, во-первых, за счет адсорбции ингибиторов на поверхности металла, во-вторых, за счет химических превращений, происходящих с ними в растворах кислот. В частности, определение концентрации каптакса и ОП-7 в промывочных растворах показало практическое отсутствие первого из них через 20—30 мин очистки кислотой и снижение концентрации второго в 1,5—2,0 раза. Несмотря на это, защитное действие данной смеси ингибиторов остается достаточно высоким, что подтверждено стендовыми и промышленными испытаниями. [c.45]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]


    Адсорбция ингибитора приводит к изменению как кинетики частных реакций, лежащих в основе коррозионного процесса, так и состояния поверхности металла, в частности величины активной поверхности, на которой он совершается. [c.18]

    Следовательно, пластическая деформация практически не влияет на хемосорбцию исследованных ингибиторов коррозии. Однако это не означает, что защитные свойства ингибиторов, связываемые обычно с адсорбируемостью, также не изменяются при пластической деформации металла например, адсорбция ингибитора КПИ-1 практически не зависит от деформации (кривая 1 для С), тогда как интенсивность разблагораживания стационарного потенциала ф в присутствии ингибитора (кривая /) даже выше, чем в неингибированной кислоте. Это объясняется деформационным нарушением в отдельных точках поверхности сплошности защитного действия указанного ингибитора и развитием локализованных анодных процессов в этих точках (аналогично питтингу). [c.158]

    На процессы коррозии значительное влияние оказывают деэмульгаторы, под влиянием которых изменяются адсорбция ингибитора на металле и его коллоидные свойства. Только применение особо эффективных ингибиторов по научно обоснованной технологии в сочетании с технологическими методами может остановить уже начавшийся процесс язвенной коррозии и предотвратить порывы трубопровода. [c.17]

    Скорость адсорбции ингибиторов в значительной мере определяет их эффективность. Знание кинетических закономерностей адсорбции особенно необходимо для быстропротекающих процессов, когда время контакта агрессивной среды и металла изменяется от нескольких десятков секунд до минут. Так, например, в кислотной ванне лудильных автоматов жесть находится 40 с, при удалении окалины с поверхности стальных листов металл контактирует с кислотой 4 мин [47]. Поэтому важно знать успеют ли ингибиторы за это короткое время адсорбироваться. [c.26]

    В практическом отношении знание кинетики адсорбции ингибитора необхо- димо для разработки оптимальной технологии процессов непрерывного и струй- ного травления, кислотных обработок нефтяных скважин, химических очисток теплоэнергетического оборудования. [c.26]

    С. . Решетников [12, 49] использовал кинетические закономерности адсорбции ингибиторов для идентификации механизма торможения коррозионного процесса (см. раздел 2.4). [c.27]

    Адсорбция ингибиторов приводит к снижению скорости коррозионного процесса кор до кор, смещению стационарного потенциала металла, изменению его физико-химических, механических н др. свойств [50]. [c.27]

    С. м. Решетниковым [12, 49] предложен метод дифференциации блокировочного и энергетического эффектов торможения коррозионных процессов на основе анализа кривых спада тока г—т и сопоставления их с соответствующими кинетическими изотермами адсорбции. В соответствии с [49] у.меньшение тока Л/ = 1о—I ( 0 — ток до введения ингибитора при т = 0) интерпретируется как адсорбция ингибитора, тормозящего коррозионный процесс по блокировочному или энергетическому механизмам. Для блокировочного эффекта [c.34]

    В результате адсорбции ингибитора происходит изменение структуры двойного электрического слоя, в том числе и величины адсорбционного скачка потенциала 2- Экранирование части поверхности (0) сплошной пленкой ингибитора исключает ее из коррозионного процесса, который протекает на поверхности, равной (1 — 0). [c.299]

    В данной работе приведены результаты, полученные при изучении процесса адсорбции ингибиторов типа ИКЕ из водной (ИКБ-4в, ИКБ-6) и углеводородной (ИКБ-2-2, ИКБ-4н) среды. [c.119]

    Мы сознательно акцентируем внимание на механизме влияния органических соединений, так как один из новых эффективных методов защиты металлов от атмосферной коррозии основан на принципе использования органических соединений (летучие ингибиторы). Органические соединения также широко используются в технологии противокоррозионной защиты (очистка от окалины и продуктов коррозии, подготовка поверхности под нанесение покрытий и т. д.). Изучение процессов адсорбции ингибиторов, и в особенности летучих, и их влияния на кинетику электродных реакций приобретает поэтому исключительное значение. В связи с последним нам представляются интересными предпринятые за последнее время попытки рассмотреть некоторые вопросы коррозии с учетом потенциалов нулевого заряда металла. [c.23]

    Книга посвящена проблемам защиты металлов от коррозии ингибиторами. Рассмотрены механизм действия ингибиторов в нейтральных и кислых электролитах, адсорбция ингибиторов, электрохимическая кинетика коррозионных процессов и пассивность металлов. Описаны защитные свойства ингибиторов и практика их применения в промышленности и быту для травления металлов, водоподготовки, защиты теплообмен,ной аппаратуры, оборудования нефтяных и газовых месторождений, изделий машиностроения и др. [c.2]


    Первый путь ингибирования, заключающийся в уменьщении скорости анодной реакции ионизации металла, можно проиллюстрировать на примере действия нитрита натрия. Этот ингибитор сильно сдвигает потенциал стали в положительную сторону, переводя ее в пассивное состояние. При наличии в электролите уже небольших концентраций ингибитора начальный потенциал стали смещается приблизительно на 0,2 В в положительную сторону, а конечный, через 10 суток, более чем на 0,7 В (рис. 2,1). Сильный сдвиг потенциала в положительную сторону во времени свидетельствует о химической природе связи металла с ингибитором и ее усилении во времени. При физической адсорбции этот процесс протекал бы довольно быстро. [c.33]

    Для того чтобы исключить возможную ошибку от адсорбции ингибиторов на отсчетном электроде (пластинка из золота), измерения КРП производили в процессе десорбции ингибитора, адсорбированного ранее в замкнутом объеме. Постоянство работы выхода отсчетного электрода периодически контролировали, заменяя исследуемый образец на эталонную пластину (никель), и при необходимости вводили поправку. При изучении контактных ингибиторов в этом необходимости не было. Для иллюстрации возможностей этого метода приведем некоторые результаты, полученные [c.77]

    Исследование анодной реакции ионизации металла (рис. 5,15) показало, что малые добавки хотя и смещают потенциал в поло-л<ительную сторону, однако поляризуемость электрода меняется мало. Все это указывает на то, что сдвиг потенциала в положительную сторону обусловлен, очевидно, в основном изменением кинетики катодного процесса. Большие концентрации ингибитора (1—2 г/л) способствуют сильной анодной поляризации электрода, что связано со специфической адсорбцией ингибитора и упрочнением химической связи по мере смешения потенциала в положительную сторону. [c.169]

    Синергетический эффект НгЗ обычно объясняют тем, что адсорбированные на железе анионы Н5 выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа Н+. К последним принадлежат и амины, которые за счет реакции протонизации превращаются в органические катионы. В результате взаимодействия промежуточного комплекса Ре(Н5 ) с органическими катионами К+ на поверхности металла возникает относительно прочное поверхностное соединение Ре(Н—5—Н), которое, с одной стороны, не способно служить поставщиком протонов для катодного процесса, а с другой — затрудняет анодную реакцию ионизации металла. Кроме того, адсорбированные катионы ингибитора смещают фгпотенциал в положительную сторону, что также способствует замедлению реакции разряда ионов водорода. [c.299]

    Трудно предположить, чтобы и в наших исследованиях большие органические ионы или молекулы при адсорбции растворялись в поверхностном слое электрода. Обнаруженную зависимость силы тока (скорости катодного процесса восстановления Н3О+) от времени можно было бы объяснить неравномерной адсорбцией ингибитора на участках с различным адсорбционным потенциалом [8]. Однако маловероятно, чтобы время адсорбции на различных участках поверхности значительно различалось, так как физическая адсорбция (а мы ее здесь предполагаем) — быстрый процесс. Поэтому, очевидно, причину наблюдающегося изменения силы тока при добавке в электролит органического ингибитора следует искать в иных явлениях. Было показано (стр. 130), что нри адсорбции молекул органических веществ или ионов строение двойного электрического слоя изменяется с образованием переходной зоны. Ее возникновение сопровождается вытеснением из двойного слоя ионов фона и молекул воды, изменением потенциала и pH в приэлектродном слое и затруднением диффузии ионов водорода к поверхности металла. Эти изменения, вызванные возникновением переходной зоны, про- [c.140]

    Механизм действия значительного числа ингибиторов заключается в адсорбции ингибитора на корродирующей поверхности и последующем торможении катодных или анодных процессов. К анодным замедлителям нужно отнести замедлители окисляющего действия, например нитрит натрия ЫаЫОг, бихромат натрия ЫааСггО,. Воздействие анодных окислителей на анодный процесс может привести к установлению пассивности, следовательно, к замедлению коррозии металла. [c.222]

    В качестве ингибиторов кислотной коррозии применяются почти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл — кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, что снижает скорость коррозии. В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает величина заряда поверхности корродирующего металла, т. е. величина его ф-потенциала. Применение ф-шкалы потенциалов позволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла позволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитывать коэффициенты торможения. Экспериментальные значения коэффициентов торможения кислотной коррозии железа в присутствии различных количеств диэтиламина, сопоставленные с расчетной прямой, приведены на рис. 103. Расчетная прямая вычерчена по уравнению [c.482]

    В качестве ингибиторов кислотной коррозии применяются по ти исключительно органические вещества, содержащие азот, серу или кислород в виде амино-, имино-, тиогрупп, а также в виде карбоксильных, карбонильных и некоторых других групп. Согласно наиболее распространенному мнению, действие ингибиторов кислотной коррозии связано с их адсорбцией на границе раздела металл — кислота. В результате адсорбции ингибиторов наблюдается торможение катодного и анодного процессов, снижающее скорость коррозии. [c.540]

    Органические ингибиторы сильно препятствуют катодному процессу [233, 234] и облагораживают потенциал железа. При этом зависимость от концентрации замедлителя соответствует изотерме адсорбции Лэнгмюра. Зависимость отношения концентрации к потенциалу от концентрации графически выражается прямой [236]. На рис. 1.81 показано обратимое изменение потенциала при адсорбции ингибитора. Оптимальное повышение потенциала достигается в том случае, когда мономолекулярный слой построен из хемосорбированных молекул. [c.90]

    Механизм действия значительного числа ингибиторов заключается в адсорбции ингибитора на корридирующен поверхности и последующем торможении катодных или анодных процессов. К анодным замедлителям нужно отнести замедлители окисляющего действия, например нитрит натрия ЫаЫОг, дихромат натрия ЫагСгзО . Воздействие анодных окислителей иа анодный [c.239]

    Механизм ингибирующего действия органических веществ. Замедле ние скорости коррозии металлов путем введения в агрессивную среду небольших количеств органических веществ — так называемое ингибирование коррозии — вряд ли возможно свести к какой-либо одной причине, хотя первым актом является, ио-видимому, адсорбция ингибиторов на поверхности корродирующего металла, и их результативный эффект будет зависеть от свойств металла, раствора и самих ингибиторов. Адсорбированные частицы ингибитора могут влиять на частные электродные реакции, лежащие в основе процесса коррозии. Они могут механически экранировать часть или всю поверхность металла и отделить его от агрессивной среды, принимать непосредственное участие в электродных реакциях, превращаться в другую форму и образовывать химические соединения с корродирующими металлами. Свойства этих новых форм существования ингибиторов и их влияние на процесс коррозии могут быть иными, чем в случае исходных веществ. [c.135]

    В начальный период этого цикла исследований основное внимание было обращено на выяснение роли адсорбции в процессах ингибирования. На основании концепции приведенной шкалы потенциалов было показано, что при коррозии металлов ингибирующее действие органических веществ меняется симбатно с их поверхностной активностью на ртути, если все эти измерения проведены при одинаковых ф-потенциа-лах, т. е. при одинаковых зарядах поверхности металла. Этим был доказан адсорбционный механизм действия большинства органических ингибиторов и внесен рациональный элемент в поиски вероятных ингибиторов. Было введено понятие о специфической адсорбции I и II родов. Специфическая адсорбция I рода определяется природой адсорбирующихся частиц природа металла здесь проявляется главным образом через его нулевую точку. Это позволило на основании адсорбционных измерений, проведенных на одном металле, предвидеть адсорбционное поведение того же вещества на других металлах. Так, в частности, оказалось возможным, используя приведенную шкалу, оценивать области потенциалов, внутри которых на данном металле следует ожидать адсорбцию и влияние органических веществ на коррозионные и другие электрохимические процессы. Подобный же подход был впоследствии плодотворно использован и в работах Лошкарева по электроосаждению металлов. Недавно в работах московских и тартусских электрохимиков были получены результаты, дающие экспериментальное качественное подтверждение этой концепции. Следует, однако, подчеркнуть, что она оправдывается для оиределенной, хотя и широкой группы ингибиторов (азотсо- [c.135]

    Большинство вариантов процесса карбамидной депарафинизации предусматривает введение активаторов — веществ, ускоряющих процесс комплексообразования. В качестве активаторов предложены и применяются спирты (наиболее эффективен метанол), кетоны, нитроалканы. Активаторы препятствуют адсорбции ингибиторов на кристаллах карбамида. Кроме того, активаторы, растворяя часть карбамида, способствуют протеканию процесса в гомогенной среде с большей скоростью. [c.100]

    С 50-х годов начинаются систематические работы по исследованию механизма действия ингибиторов, что стало возможным благодаря развитию электрохимической теории коррозии. Создаются крупные научные школы по разработке и исследованию ингибиторов коррозии в Москве (Институт физической химии АН СССР, Московский государственный университет, Московский государственный педагогический институт им. В. И. Ленина), Киеве (Политехнический институт), Днепропетровске (Металлургический институт), Перми (Пермский государственный университет) и других городах. Широкое использование в коррозионных исследованиях импедансных и потенциостатических методов стало возможным благодаря работам НИФХИ им. Карпова, по инциативе которого были разработаны н созданы первые отечественные потенциостаты, мосты переменного тока, другие приборы и оборудование. Резко повысился теоретический и экспериментальный уровень проводимых исследований, возросло число фундаментальных работ, посвященных механизму коррозионных процессов, ингибированию их, исследованию закономерностей адсорбции ингибиторов и компонентов агрессивной среды, кинетики. В разработку теоретических основ коррозионных процессов большой вклад внесли школы А. Г. Акимова, Я- М. Колотыркина (В. М. Нова-ковский, В. Н. Княжева, Г. М. Флорианович), работы В. П, Батракова. Н. Д. То-машова, В. В. Скорчеллетти. [c.8]

    Все это является результатом ад- сорбции ингибитора на поверхности кор- родирующего металла. Последующее влияние адсорбированных молекул ингибитора сводится уже к изменению ими кинетики парциальных электрохимических реакций. Таким образом, адсорбция ингибитора является первичным необходимым актом ингибирования. Под механизмом действия ингибиторов обычно понимают совокупность процессов ад- 9 сорбции ингибиторов и последующего воздействия адсорбированного вещества на протекание электрохимических реакций. [c.19]

    С учетом адсорбции ингибитора суж-денме о механизме торможения катодно 1о[у 1-8)1 го процесса можно сделать, сопоставля  [c.28]

    Таким образом, кислород оказывает влияние на протекание катодного и анодного процессов. На катоде он усиливает деполя-ризувдее действие, на анодных участках усидизазтоя адсорбция ингибитора на поверхности металла. [c.12]


Библиография для Адсорбция ингибиторов процессов: [c.363]   
Смотреть страницы где упоминается термин Адсорбция ингибиторов процессов: [c.214]    [c.75]    [c.55]    [c.343]    [c.147]    [c.27]    [c.30]    [c.36]    [c.68]    [c.360]    [c.140]    [c.119]    [c.11]   
Ингибиторы коррозии металлов в кислых средах (1986) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Ингибиторы процесса

Процессы адсорбцией



© 2024 chem21.info Реклама на сайте