Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители термостойкость

    Кроме того, при контакте полимеров с различными субстратами следует учитывать возможность каталитических реакций, сопровождаемых появлением ненасыщенных связей и функциональных групп, вступающих затем во взаимодействие с субстратом [6, с. 7]. Эпоксидные и фенольные клеи, например, разрушаются при повышенных температурах при контакте со стеклом и алюминием медленнее, >чем с медью, никелем, магнием, цинком, большинством сплавов железа и нержавеющими сталями. Двухвалентные металлы (2п, Си, Ре, N1, Мд и т. д.) окисляются легче, чем А1, 51, Ре +. Именно поэтому в качестве наполнителей термостойких клеев рекомендуется применять порошкообразный алюминий, оксид алюминия и ЗЮг [45, с. 6]. [c.218]


    На термостойкость клеевого соединения большое влияние оказывает природа субстрата. Эпоксидные и фенольные клеи, например, разрушаются при повышенных температурах медленнее при контакте со стеклом или алюминием, чем с медью, никелем, магнием, цинком и большинством сплавов железа и нержавеющими сталями. Далее, двухвалентные металлы (2п, Си, Ре, N1, Мд и т. д.) окисляются легче, чем А1, 81, РеЗ+. Именно поэтому в качестве наполнителей термостойких клеев рекомендуется применять порошкообразный алюминий, окись алюминия и ЗЮг [8, с. 6]. [c.8]

    В качестве наполнителей термостойких клеев применяют измельченный асбест, двуокись титана, нитрид бора, нитрид алюминия, алюминиевый порошок и некоторые другие. В ряде случаев применяют смесь наполнителей. К сожалению, в литературе нет исчерпывающих сведений о влиянии наполнителей на прочностные характеристики термостойких эпоксидных клеев. Имеются некоторые данные о влиянии наполнителей на обычные, нетермостойкие эпоксидные клеи. В табл. 1.7 приведены данные о влиянии различных наполнителей (вводимых в пастообразные композиции) на прочность клеевых соединений алюминия [8, с. 40]. Можно предположить, что характер влияния наполнителей на свойства термостойких эпоксидных систем будет таким же. [c.39]

    Широко используются полиизобутилены в резиновой промышленности совместно с натуральным и синтетическим каучуками и наполнителями. Резины на основе полиизобутилена имеют достаточно высокие физико-механические показатели, обладают повышенными термостойкостью, озоностойкостью, водо- и газонепроницаемостью и стойкостью к действию кислот. Такие резины применяются для изготовления водонепроницаемых тканей, плащей, палаток, кислотоупорных шлангов, рукавов, транспортерных лент, а также в качестве защитных средств от агрессивных продуктов. [c.340]

    Для повышения прочности и улучшения технологических свойств термостойких резин в них вводят различные наполнители. Для фторкаучуков в качестве наполнителей используют белые и углеродные сажи, а также силикаты и фториды кальция, магния и др. [19, с. 257]. [c.506]

    Нитраты целлюлозы, как и все сложные эфиры, мало устойчивы к действию кислот и щелочей. Недостатком их яиляется низкая термо- и светостойкость, горючесть и взрывоопасность. Введение стабилизаторов (дифениламина и др.) повышает термостойкость нитратов целлюлозы. Горючесть коллоксилина снижают добавлением наполнителей и пластификаторов. [c.104]


    Термостойкая резина, (например, ИРП-1225) выдерживает температуру до 200 °С. Паронит — композиция на основе асбеста, каучука н наполнителей. Используют его при <450°С и давлении до 80 кгс/см . Паронит устойчив в азотной и серной разбавленных кислотах, а также в щелочных растворах. Полихлор-виниловый пластикат (смесь полихлорвиниловой смолы с пластификатором) стоек в большинстве кислот. Предельная температура эксплуатации составляет 60 °С. Прокладки из комбинации асбеста и фторопласта применяют при температуре до 400 °С в различных агрессивных средах. По конструкции различают плоские, шнуровые и фасонные прокладки. [c.191]

    Представляет интерес использование для деталей насосов конструкционных пластиков, содержащих в качестве наполнителя неориентированные углеродные волокна, так называемые углепластики. От других пластмасс конструкционного назначения углепластики отличаются низкой плотностью, высоким модулем упругости, высокой усталостной прочностью, термостойкостью, низким коэффициентом трения, высокой износостойкостью, стой- [c.40]

    Раствор полимера смешивают с окислителем и пропитывают им термостойкий усиливающий наполнитель (волокно или ткань, [c.484]

    В первом случае отфильтрованный осадок подвергают сушке в токе горячего воздуха при температуре 130—200 °С до влажности не более 1 %. Высушенный осадок измельчают в шаровой мельнице до фракции не более 0,1 мм. В таком виде продукт нейтрализации возможно использовать в качестве неорганического наполнителя в мыльную стружку, применяемую в качестве мыльной смазки под сухое волочение катанки. В мыльную смазку неорганический наполнитель вводится в количестве 30—40 %. Это позволяет сократить расход мыла на волочение, повысить термостойкость смазки и сократить расход волочильного инструмента, а также частично сократить выбросы в окружающую среду Мыльная смазка с добавлением неорганического наполнителя внедрена на Челябинском металлургическом заводе. [c.114]

    Термостойкость фенольных полимеров резко повышается при введении в них неорганических наполнителей и может быть значительно улучшена за счет химической модификации [3]. Как уже отмечалось, в структуре ФС имеются два особенно слабых места, т. е. два элемента, особенно сильно подверженные окислению, — метиленовая связь и фенольная гидроксильная группа. Если сравнить термостойкость метиленовых производных фенола с термостойкостью метиленовых производных бензола (наиример, иоли-п-ксилилена), то у последних, не имеющих фенольной гидроксильной группы, она значительно выше. [c.109]

    Термостойкость. На рпс. 10.9—10.11 показано влияние природы наполнителя и способа предварительной обработки композиции на прочность и модуль упругости фенольных материалов, устойчивых к действию высоких температур. [c.163]

    Для эксплуатации в высокоагрессивных средах разработаны новые типы связующих для стеклопластиков, характеризующихся химической стойкостью и термостойкостью. Так, связующие на основе виннлэфирных смол обладают стойкостью к 400 видам химически агрессивных сред. Стеклопластики на этих связующих негорючи, удовлетворяют противопожарным требованиям. Разработаны стеклопластики, содержащие электропроводящий наполнитель и не накапливающие на поверхности электростатических зарядов, что позволяет применять их в нефтехимической промышленности. [c.40]

    В качестве уплотнительных смазок используют преимущественно смазки на мыльных и неорганических з агустителях. В большинстве из них содержатся наполнители (графит, дисульфид молибдена, порошки мягких металлов), которые значительно увеличивают герметизирующую способность смазки, препятствуют ее выдавливанию из рабочих узлов, повышают термостойкость и снижают коэффициент трения. [c.382]

    Углеродные конструкционные материалы (УКМ) отличаются от известных конструкционных материалов более высокой удельной прочностью и жесткостью. Однако полимерные матрицы обладают низкой термостойкостью, что ограничивает область применения У1СМ. В последние годы наибольшее распространение в различных отраслях техники, особенно авиации и космической отрасли, получили углерод-углеродные композиционные материалы (УУКМ), содержащие углерод как в виде армирующего наполнителя, так и в виде матричного материала. [c.6]

    Развитие техники требует механически прочных и термостойких материалов. Это вызвало особый интерес к углерод-утлеродным композиционным материалам (УУКМ), содержащим углерод как в виде армирующего наполнителя, так и в виде матричного материала. [c.86]

    В качестве наполнителя широко применяется стекловолокно. Прочность стеклянных волокон зависит от химического состава стекла, диаметра волокна и технологии его изготовления. В основном применяют бесщелочное алюмоборсиликатное стекло, так как с увеличением содержания щелочей прочность стекловолокна снижается. Борсиликатное стекло наиболее устойчиво против атмосферных воздействий, является хорошим диэлектриком, обладает высокой огнестойкостью и термостойкостью. [c.176]

    В связи с высокой пластичностью, термической неустойчивостьк> натуральные и синтетические каучуки не используются непосредственно для технических целей. Для придания каучукам прочностных свойств, эластичности и термостойкости их подвергают обработке серой или ее соединениями (например, хлористой серой S2 I2) — вулканизируют. Процесс вулканизации был открыт в 1839 г. Генкоком и Гудьиром. Это довольно сложный химический и физико-химический процесс, сущность которого заключается в образовании новых поперечных (мостиковых) связей между полимерными цепями (см. с. 407). В результате такой обработки каучук превращается в технический продукт — резину, которая содержит до. 5% серы. Кроме серы в резину входят различные наполнители, пластификаторы, красители, антиоксиданты и др. Вулканизированный каучук, содержащий по массе свыше 30% серы, называется эбонитом. [c.83]


    Наличие большого числа наполнителей и армирующих материалов определило необходимость создания стандартов для сравнительной оценки их свойств и выбора нужного инградиеита. В настоящее время общепринята следующая классификация этих материалов общего назначения, с улучшенными ударопрочными свойствами, с улучшенными электрическими свойствами и термостойкие. В ФРГ стандарт DIN 7708 устанавливает более конкретную дифференциацию по типу наполнителя, количеству смолы и цвету. Минималь- [c.146]

    Минеральная мука. Обычно наполнители на основе минеральной муки применяются в термореактивных пластмассах для улучшения различных их характеристик уменьшения усадки при отверждении и снижения тепловыделения в процессе отверладения, увеличения прочности при сжатии и жесткости, повышения термостойкости и огнестойкости, улучшения электрических характеристик, для регулирования текучести, улучшения обрабатываемости и качества поверхности, снижения стоимости. Физико-механические характеристики некоторых наиболее раснространенных минеральных наполнителей приведены в табл. 10.5. [c.152]

    Слюда как минерал слоистой структуры имеет особо важное значение. Мусковит, представляющий собой силикат кальция и алюминия, является почти единственно применяемой разновидностью этого минерала. Пластинки или чешуйки слюды весьма гибки и упруги, обладают высокими электроизоляционными характеристиками, а также термостойкостью. Наполненные слюдой компаунды применяются в электротехнике для коллекторов и т. и. Кроме высоких электрической прочности и термостойкости эти компаунды обладают низкой удельной теплопроводностью, малым во-допоглощением и очень хорошей химической стойкостью, поскольку скорость диффузионных процессов заметно снижается за счет слоистой структуры наполнителя. [c.153]

    Термостойкие адгезивы на основе ФС используют для приклеивания к цоколю баллонов осветительных и радиолами. Адгезивы состоят из порошкообразной смесн быстроотверждающегося новолака, ГМТА и минеральных наполнителей содержание смолы в этой смеси составляет 12—15% Все компоненты затирают в пасту с 10 масс. ч. растворителя (этанол, изонропанол) и полученную композицию загружают в бункер цокольной машины, на которой с помощью дозировочных устройств сначала заполняют цоколь адгезивом, а затем запрессовывают в него стеклянный баллон. Для отверждения адгезива собранное изделие помещают в туннельную или карусельную печь с температурой 180—200 °С и выше. [c.269]

    Располагая полученными зависимостями для трехфракционных смесей и зная характер изменения свойств графита в зависимости от фракционного состава исходной шихты, выраженного через средневзвешенный размер зерен наполнителя и его удельную поверхность, можно, задавшись определенной плотностью укладки зерен и требованиями к качеству получаемого графита, подобрать наиболее оптимальные грансоставы полифракционной исходной шихты и получить прочный и термостойкий материал для ниппелей. [c.139]

    Для производства кислотоупорной керамики применяют в основном артемовскую глину с добавками шамота и перлита. Влияние состава массы на свойства кислотоупорных изделий приведено в табл, 5.2. Термостойкие плитки ТКД изготавливают из массы с ду-нитовым наполнителем, однако образующийся при обжиге дунито-вых масс кардперит нестоек в растворах серной кислоты слабой и средней концентрации. Лучшие результаты дает введение в керамические массы 10 % молотых отходов кварцевого стекла. Плитки из таких масс имеют водопоглощение 3,5—6,8 %, кислотостонкгэсть 97 %, прочность при сжатии 66—68 МПа, прочность при изгибе 11— [c.82]

    КЕРАМИЧЕСКИЕ КЛЕИ, получают на основе высокоплавких оксидов Mg, А1, 8 и оксидов щел. металлов с добавками селитры, НзВОз и в нек-рых случаях — порошков металлов (для повышения термостойкости). Готовят сплавлением компонентов, быстрым охлаждением сплава (фритты) в воде, сушкой, измельчением, смешением с наполнителями и др. модификаторами при добавлении воды. К. к.— суспензии тонкоиэмельченных компонентов в воде их наносят на соединяемые пов-сти и выдмживают на воздухе для удаления воды. Склеивают при небольшом давл. и т-ре, превышающей на 20—50 °С т-ру плавления композиции, в течение 15—20 мин. Клеевые швы работоспособны до ЗООО °С, но имеют низкую прочность и хрупки. Примен. для склеивания керамики, металлов, кварца, графита и др. термостойких материалов в авиац., электронной пром-сти. [c.253]

    ПОРОШКОВЫЕ КРАСКИ, высокодисперсные композиции, применяемые для получения защитных, Д(-ко])атив ых и др. покрытий по металлу, бетону, стеклу, керамике и др. термостойким материалам. Осн. компоненты — пленкообразующие в-ва (эпоксидные или полиэфирные смолы, полиакрилаты, полиамиды, поливинилхлорид, пентаплаа, полиэтилен, поливинилбутираль, фторопласты и др.) и пигменты, напр, оксиды Сг, ре, Т , сажа содержат, крометого, пластификаторы, наполнители, отвердители, стабилизаторы, а также добавки, улучшающие сыпучесть краски н ее растекание по подложке. Изготовляют П, к. смешением сухих компонентов в мельницах (напр,, шаровых, коллоидных) или в турбосмесителях, а также смешением в расплаве в экструдерах или лопастных смесителях с послед, измельчением в дробилках. Размер частиц П. к. 10—300 мкм, толщина образуемых ими покрытий 50—400 мкм. [c.474]

    УГЛЕВОДОРОД-ФЕНОЛО-ФОРМ АЛ ЬДЕГИДНЫЕ СМОЛЫ, олигомерные продукты поликонденсации фенола и формальдегида с углеводород-формальд. смолами или с углеводородами. В присут. кислотных кат. получают новолачные смолы, в прнсут. щел. катализаторов — резольные, аналогичные феноло-формальд. смолам. Замена высокую адгезию смол к наполнителям, а также повышенные коксовый остаток (более 60%), термостойкость (до 300 °С) и диэлектрич. св-ва (ро 10 —10 Ом-см) продуктов отвер [c.602]

    Широкое применение находят фторопласты разных типов как в ненаполненном, так и в наполненном виде. Из них изготавливают капилляры и трубки, уплотнения разного типа. Их химическая инертность совершенно уникальна, механиче-кая прочность высокая, некоторые виды обладают достаточной прозрачностью, термостойкость фторопластов высокая (они не разлагаются в заметной степени до температур около 250—300 °С). Капилляры из толстостенного тефлона выдерживают давления до 10—15 МПа и более. Для соединения таких капилляров друг с другом на их концах обычно с помощью специального приспособления термомеханически или механически формуют фланцы, сдавливанием которых вместе специальными фитингами получают герметичное и полностью инертное соединение. Как конструкционный материал фторопласт имеет один серьезный недостаток он обладает в ненаполненном виде хладотекучестью, что приводит к необходимости либо вводить препятствующие этому наполнители (например, графитовые волокна), либо заключать фторопластовые уплотнения в камеры, исключающие свободные объемы и предотвращающие его вытекание в нагруженном состоянии. В наполненном виде фторопласт является наилучшим материалом для уплотнений поршней (обычно наполнитель также высокоинертный химически, например графитовые волокна), хорошо он работает и в уплотнениях инжекторов, если температура их работы невысока. [c.167]

    Исходя из патентных и литературных данных, может быть описано несколько рецептур инвертных эмульсий. В одной из них основным эмульгатором является смесь жирных кислот с известью,, щелочью, бихроматом, хлористым кальцием и инертными наполнителями. Вспомогательным эмульгатором, обеспечивающим содержание воды в пределах 20—80%, является лецитин. Известь и щелочь служат ингибирующими и мылоообразующими компонентами. Бихромат, окисляя жирные кислоты, снижает водорастворимость мыл и в результате но 1вления высокодисперсной коллоидной фазы уменьшает фильтрацию. Этому, как и общему загущению системы,, способствует также введение наполнителя. Хлористый кальций и лецитин являются ингибиторами твердой фазы. Помимо этого, лецитин в силу своей дифильной природы образует на поверхностях раздела высокоструктурированные слои и является поэтому активным эмульгатором избыточной воды. Положительной стороной лецитина является также регулирование термоокислительной деструкции жирных кислот. Тем не менее, термостойкость этой рецептуры не превышает 95° С. [c.383]

    Характеристику 12 типичных инвертных эмульсий, запатентованных в США, приводит в своей монографии В. Роджерс [52]. Из этой сводки можно вывести некоторые общие принципы регулирования свойств инвертных эмульсий. Основным методом разжижения является разбавление дизельным топливом. Загущение достигается добавками мыл, коллоидной фазы или наполнителей. Усиление эмульгирующей способности в присутстЬии избыточной воды также обеспечивают мыла, аминированные глины и особенно лецитин. Фильтрацию снижают присутствующая твердая фаза, добавки битума, специальйые виды аминированных глин, мыла и их окислители. Для снижения фильтрации также полезны фосфатиды (лецитин), способствующие, помимо своей основной функции, повышению термостойкости эмульсии.  [c.384]

    В состав герметиков на основе бутадиен-нитрильных каучуков входят наполнители, феноло-формальд. смолы, орг. р-рители и др. Невулканизов. составы, образующие герметизирующий слой в результате испарения р-рителя, обладают хорошей адгезией и стойкостью к действию бензина, керосина и воды. Их термостойкость не превышает 100°С. Прочные и топливостойкие вулканизованные бутадиен-нитрильные Г. работоспособны до 150°С. [c.535]

    Керамич. к л е и - композиции на основе высокоплавких оксидов Mg, Al, Si, Zr (т. пл. 2825, 2053, 1728 и 2700 °С соотв.) и оксидов щелочных металлов (т. пл. 350-400 °С) с добавками селитры, НВОз, а в нек-рых случаях, для повышения термостойкости,-порошков металлов (А1, Си, Ni, Si, Fe, Ti, Ва). В зависимости от количеств, соотношения высоко- и низкоплавких оксидов получают композиции с т.пл. 500-1Ю0°С, Готовят сплавлением компонентов, быстрым охлаждением сплава (фритты) в воде, сушкой, измельчением, смешением с наполнителями и др. модификаторами при добавлении воды. Представляют собой суспензии тонко-измельченных компонентов в воде или, напр., в среде 1%-ного р-ра нитроцеллюлозы в амилацетате. Примерная рецептура (в мае. ч.) фритта 60-70, коллоидный SiOj 1-2, порошок металла 5-20, вода 25-32 состав фритты (в мас.ч.) 23-28 SiO , 10-15 Al Oj, 10-20 Na O, 3-6 К О, 3-6 BajOj, 8-12 ZnO, 4-6 aO. Для повышения прочности клеевого соединения керамич. клеи армируют металлич. сетками. Клей наносят на соединяемые пов-сти, выдерживают на воздухе для удаления воды, после чего склеивают при небольшом давлении и т-ре, превышающей на 20-50 °С т-ру плавления композиции, в течение 15-20 мин с послед, плавным охлаждением. Клеевые соед. работоспособны до 3000 °С, но отличаются хрупкостью. Прочность соединений металлов при сдвиге 6-20 МПа. Применяют для склеивания керамики, металлов, кварца, графита и др. термостойких материалов в авиац., электронной пром-сти, приборостроении. [c.404]

    К. п. могут быть использованы как полупроводники и катализаторы (напр., полифталоцианины), для изготовления пленок, покрытий и термостойких изделий, устойчивых к действию р-рителей. К. п. гидроксизамещенных антрахино-нов применяют как фотостабилизаторы, полифосфинаты Т1 и Сг-как антистатики. Ряд К. п.-наполнители и модификаторы др. полимеров. [c.466]

    К. л. обычно имеют низкую вязкость, хорошо смачивают пигменты и наполнители, что позволяет использовать их (даже с содержанием сухого остатка 60-70%) для получения эмалей. Поскольку т-ры длит, эксплуатации покрытий на основе таких эмалей обычно превышают 200 °С, для их произ-ва применяют термостойкие неорг. пигменты (алюминиевую пудру, красные железооксидные, красные кадмиевые, хромовые н кобальтовые) и наполнители (слюду, асбест, реже тальк, барит). Исключение составляют водо- и атмосферостойкие эмали на основе модифицир. К. л. для строит. Целей, в к-рых можно использовать и орг. пигменты. В электроизоляц. эмалях, грунтовках и шпатлевках, эмалях для атмосферо- и химически стойких покрытий с т-рой эксплуатации не выше 200°С пигментами служат ТЮ , цинковые белила и т. п. [c.512]

    М. в. и металлизир, волокна и нити используют для изготовления текстильных изделий и их отделки (напр., парчовые ткани, трикотаж с люрексом, нетканые материалы, войлок, антистатич. тканн и ковры, галуны, шнуры, воинские знаки различия, шитье золотом и серебром, елочные украшения). Высокопрочные и термостойкие М. в. (молибденовые, вольфрамовые, стальные)-армирующие наполнители для легких металлов и сплавов, а также керамич, материалов, что существенно повышает их мех. св-ва и теплостойкость. Металлич. нити, а также ткани и сетки из них-наполнителн полимерных композиц материалов (напр., фрикционных-для тормозных колодок транспортных ср-в) сетки применяют также для разделения дисперсных систем (сита), в произ-ве бумаги и картона, сетки и войлоки-для фильтрации жидкостей и газов (в т.ч. агрессивных и горячих) войлоки-прокладочные и уплотнит, материалы. Мн. виды М. в. (нити, сетки, жгуты и др) используют в электро- и радиотехнике. [c.41]


Смотреть страницы где упоминается термин Наполнители термостойкость: [c.555]    [c.478]    [c.555]    [c.85]    [c.75]    [c.141]    [c.476]    [c.7]    [c.145]    [c.229]    [c.239]    [c.569]    [c.407]    [c.664]    [c.148]   
Полимерные клеи Создание и применение (1983) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Волокна как наполнители термостойкие

Наполнители

Наполнители термостойких смол

Пигменты и наполнители и их влияние на свойства термостойких покрытий

Термостойкость влияние наполнителей



© 2024 chem21.info Реклама на сайте