Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина восстановление до металла

    Активацией называют процесс, в результате выполнения которого обрабатываемая поверхность диэлектрика приобретает каталитические свойства, обеспечивающие инициирование реакции химического восстановления металла. Активация может быть осуществлена физическими и химическими способами (рис. 13). Практическое значение имеют последние. Суть их состоит в том, что на поверхность диэлектрика наносят активатор, из которого образуются каталитически активные частицы. В качестве активатора может быть использован раствор одного из благородных металлов (палладия, серебра, золота, платины и др.). Возможно использование растворов меди, железа, никеля, кобальта, но практического применения они не получили. [c.42]


    Восстановление металлами. Наиболее старый способ, применяемый для отделения платиновых металлов от неблагородных,— осаждение платиновых металлов цинком, магнием, медью и железом из кислых растворов. Недостатком способа является то, что осадки платины, палладия, и родия захватывают примесь металла-осадителя. Иридий выделяется не полностью. [c.221]

    Осаждение коллоидальных металлов в момент выделения . Платина осаждаетсяна силикагеле путем вымачивания носителя в слабо основном растворе ее солей, например хлороплатината натрия, сушки при 100° и после охлаждения смачиванием раствором формальдегида избыток формальдегида вымывает, соли платины. Восстановление формальдегидом при комнатной температуре происходит медленно. Когда оба реагента смешиваются по всему пористому носителю и температура поднимается приблизительно до 100°, в капиллярах силикагеля происходит восстановление и выделение металлической платины. Вместо формальдегида восстановление можно проводить формиатом натрия, гидразином, винной кислотой и аналогичными восстанавливающими реагентами. При осаждении палладия не следует применять хлористый палладий в виде основного раствора. Серебро осаждают погружением сухого геля в раствор нитрата серебра требуемой концентрации, сушкой ниже 140°, охлаждением и адсорбцией газообразного аммиака для образования аммиачного комплекса серебра, который можно восстановить альдегидом. Затем гель смачивают раствором формальдегида, нагревают до 100° для быстрого восстановления, покрытый серебром гель промывают теплой водой и сушат. [c.483]

    Внешним видом рений походит на платину. Чистый металл пластичен при комнатной температуре, но при обработке твердость сильно возрастает из-за наклепа. Для восстановления пластичности его отжигают в водороде или инертном газе. [c.278]

    Способность водорода присоединяться по месту кратных углеродных связей известна уже давно. Еще в середине XIX в. М. Фарадей, проведя реакцию взаимодействия водорода с этиленом над платиной, осуществил превращение этилена в этан. Однако долгое время разрозненные наблюдения отдельных авторов казались лишенными интереса. Лишь после того, как было открыто замечательное свойство некоторых восстановленных металлов, например никеля, кобальта, меди [1], способствовать гидрированию, т. е. насыщению водородом алифатических и ароматических кратных связей, каталитическое гидрирование начало быстро развиваться. В настоящее время им широко пользуются в исследовательской работе для изучения числа и характера насыщенных связей, определения строения неизвестных соединений, например природных веществ. Внедрение гидрирования в технику явилось стимулом для грандиозного развития процессов деструктивного гидрирования, синтезов из окислов углерода, облагораживания топлива и многочисленных реакций восстановления. [c.338]


    Полярографический метод, разработанный Я- Гейровским, состоит в том, что раствор исследуемого вещества подвергают электролизу. При этом изучают зависимость силы тока, протекающего через раствор, от величины приложенного напряжения. Исследованию могут подлежать соединения, восстанавливающиеся на катоде (ионы металлов), или вещества, окисляющиеся на аноде (гидрохинон или другие органические вещества). Принципиальная схема полярографа дана на рис. 48. При исследовании соединений, восстанавливающихся на катоде, катодом обычно служит капельный ртутный электрод, представляющий собой ре- зервуар со ртутью, из которого периодически через капилляр капает ртуть. Возможно также применение микроэлектродов из других каких-нибудь металлов (платина и т. п.). На ртути может происходить выделение металла, образующего или не образующего с ней амальгаму. Восстановление металла может идти либо через стадию промежуточного состояния окисления, либо минуя ее. Полярограммы (кривые зависимости силы тока, протекающего через раствор, от величины приложенного к раствору напряжения) в каждом из перечисленных случаев имеют вид, представленный на рис. 49. [c.291]

    Металлы, имеющие отрицательные потенциалы (от лантана до молибдена), окисляются на воздухе, металлы, имеющие положительные потенциалы, окисляются гораздо медленнее или практически вовсе не окисляются (платина, золото). Легкость восстановления металлов из оксидов также увеличивается в указанном ряду. Оксиды металлов от лантана до цинка с трудом восстанавливаются, оксиды металлов начиная приблизительно с меди и до золота восстанавливаются легко. [c.202]

    Платиновые катализаторы готовили путем пропитки активированного угля марки АР-3 раствором платинохлористоводородной кислоты с последующим восстановлением платины до металла формиатом натрия при 70—80 С или водородом при 250—350 С. Для испытаний использовали как лабораторные образцы катализаторов, так и опытные партии, приготовленные в цехе. В качестве растворителя, как и в предыдущих исследованиях [8], применяли анилин. [c.51]

    Н. Д. Зелинским и сотрудниками. В качестве катализаторов ими использовались платина, палладий и никель, нанесенные на носители, например на активированный уголь и окись алюминия. Каталитическое дегидрирование в присутствии указанных восстановленных металлов протекает в паровой фазе при 300—330° без образования каких-либо промежуточных продуктов дегидрирования типа циклоолефинов или циклодиолефинов. Лишь циклопарафины, содержащие шесть углеродных атомов, способны дегидрироваться пятичленные углеродные кольца, а также любые другие циклические структуры, кроме шестичленных углеродных колец, остаются неизмененными (правило Зелинского). Для дегидрирования шестичленных нафтеновых структур рекомендованы с.пе-дующие катализаторы 1) платина на окиси алюминия (или на древесном угле), [c.137]

    Чем сильнее разбавлена азотная кислота, тем сильнее идет процесс ее восстановления. Металлы, расположенные в ряду активностей (напряжений) за водородом, восстанавливают концентрированную азотную кислоту до оксида азота (IV), а разбавленную — до оксида азота (II). Более активные металлы (2п, М , Са и др.) восстанавливают азотную кислоту до оксида азота (I) сильно разбавленная кислота восстанавливается ими до аммиака, который с избытком кислоты образует соли аммония. Такие металлы, как золото, платина, иридий, родий, ниобий, тантал, вольфрам, с азотной кислотой не реагируют. Большинство неметаллов восстанавливают азот- [c.132]

    В настоящее время разработаны способы химического восстановления металлов из их соединений для получения пленок серебра, меди, золота, платины, никеля, кобальта и сурьмы. Кроме того, химическим путем готовят пленки сернистого свинца, сернистого серебра и т, п. [c.45]

    Основные научные работы относятся к химии и технологии платины, палладия и хрома. Первым в России исследовал платиновые металлы и получил (1797) ряд тройных комплексных солей платины — хлороплатинаты магния, бария и натрия. Изучал растворимость в воде хлороплатината аммония. Получил (1797) амальгаму платины восстановлением хлороплатината аммония ртутью. Разработал (1800) новый способ получения ковкой платины прокаливанием ее амальгамы. Предложил метод отделения платины от железа. Впервые получил (1797) и описал золь металлической ртути. Открыл (1800) хромовые квасцы, получил ряд окислов хрома. Исследовал сплавы платины с медью и серебром, сернистую платину, возглавлял (1799—1805) Закавказскую экспедицию, изучавшую минеральные богатства Кавказа и Закавказья, способствовал развитию горного дела в этом районе. [c.348]

    Водородный электрод не может быть применен в присутствии некоторых ядов — веществ, которые нарушают обратимость электродного процесса [уравнение (IX.2)]. К ним относятся ион цианида, сероводород, соединения мышьяка и катионы некоторых металлов, например, серебра или ртути. Мешают также некоторые анионы. Нитраты в растворах сильных кислот могут восстанавливаться до аммиака, но они не вызывают осложнений в растворах слабых кислот [3]. Нитрофенолы, бензойная кислота и другие ароматические соединения восстанавливаются водородом в присутствии тонкоизмельченной платины. Восстановление ускоряется при повышении температуры, но его можно замедлить, если применять тонкослойные электроды [4]. В ряде случаев хорошие результаты дают металлы с меньшей каталитической активностью, чем у платины. Электроды, покрытые тонко диспергированным палладием, обеспечивают воспроизводимые и постоянные значения потенциалов в растворах кислых фталатов калия и натрия, в которых из-за восстановления фталата черненый платиновый электрод не пригоден [5] .  [c.211]


    Растворы иридия обычно содержат платину. Оба металла осаждаются при добавлении чистого гранулированного цинка в соляной кислоте. Иридий и платина осаждаются в виде тонкодисперсного черного металла, примеси из которого удаляются промыванием. Платина может быть удалена после обработки царской водкой, а нерастворимый остаток высушен, прокален, восстановлен водородом до металлического иридия и взвешен. Для избирательного титрования иридия в. присутствии платины, палладия и родия был применен гидрохинон [12]. Этот метод надежен в присутствии меди, кобальта, железа, марганца, никеля, титана и вольфрама. [c.134]

    Осаждение в виде металлической платины восстановлением цинком. Осаждение проводят цинковой пылью в среде разбавленной соляной кислоты (0,5 мл концентрированной соляной кислоты на 85 мл воды). После осаждения платины сливают прозрачную жидкость, а осадок обрабатывают 2 н. азотной кислотой, отфильтровывают и промывают. Благородные металлы остаются нерастворенными. Осадок редко бывает чистым. Этот метод используется только для первоначального грубого отделения платины. [c.945]

    Физические и химические свойства. По внешнему виду рений походит на платину. Чистый металл пластичен при комнатной температуре, но при обработке твердость сильно возрастает из-за наклепа. Для восстановления пластичности его отжигают в атмосфере водорода или инертного газа. [c.333]

    Так же как в работе [1], платиновые катализаторы готовили путем пропитки активированного угля марки АР-3 раствором платинохлористоводородной кислоты с последующим восстановлением платины до металла формиатом натрия или водородом. [c.58]

    В качестве катализатора применяли платинированный уголь, приготовленный путем пропитки активированного угля марки АР-3 раствором платинохлористоводородной кислоты с последующим восстановлением платины до металла водородом при 350° С. Использованный водород соответствовал марке А ГОСТ 3022—61 и содержал менее 0,01% кислорода. Все опыты проводили в 40 мл 75%-ного этанола. [c.101]

    Водород соответствовал требованиям марки А ГОСТ 3022—61, содержал менее 0,01% кислорода. 1% платиновый катализатор был приготовлен путем пропитки активированного угля марки АР-3 раствором платинохлористоводородной кислоты и восстановления платины до металла водородом при 350° С. [c.107]

    При изготовлении электродов ЭТП-02 также используют платиновую проволоку, впаянную в стекло. Однако здесь она выполняет только роль токо-отвода, рабочей поверхностью служит слой мелкодисперсной платины на стекле (видимая поверхность 2,5—3 см , истинная за счет шероховатости во много раз больше). Для увеличения прочности платинового покрытия часть стеклянного корпуса подвергают специальной обработке, затем на нее наносят раствор, содержащий платинохлористоводородную кислоту и солянокислый гидразин (восстановитель). Заготовку электрода переносят в муфель, где выдерживают при 60—80 °С. Операцию нанесения раствора и термической обработки повторяют не менее двух раз. Для окончательного обжига заготовки и восстановления платины до металла служит пламя горелки. [c.114]

    Первый слой покрытия на диэлектрики наносят путем химического восстановления металла. Наиболее изученными являются процессы никелирования, кобальтирования и меднения. Эти процессы — автокаталитические, т. е. процесс восстановления (например, солей никеля гипофосфитом натрия) начинается самопроизвольно только на поверхности некоторых металлов — никеле, кобальте, железе, палладии и алюминии, — которые являются катализаторами. Однако никелевые покрытия можно нанести и на другие металлы и сплавы, например медь, латунь и платину, если эти металлы после погружения их в раствор привести в контакт с никелем или другими более электроотрицательными металлами. На цинке и кадмии процесс химического восстановления никеля совсем не протекает. После нанесения тонкого слоя никеля на них покрытие само катализирует процесс восстановления металла. Одним из основных факторов, определяющих скорость процесса, является температура раствора, оптимальной является температура 96— 98 °С. [c.335]

    Процесс этот имеет прикладное значение, поскольку глиоксале-вая кислота является исходным сырьем для синтетического получения ванилина и ванилаля. Электрохимическое восстановление щавелевой кислоты сильно зависит от природы металла, используемого в качестве катода. На катодах с низким перенапряжением выделения водорода — никеле, платине, восстановления не наблюдается, в то время как на катодах из ртути, свинца, амальгамы таллия и кадмия процесс восстановления протекает без существенных затруднений. Наиболее эффективно процесс осуществляется на кадмиевом катоде, потенциал точки нулевого заряда которого, как показано на рис. 202, наиболее сильно сдвинут в электроотрицательную сторону, а перенапряжение выделения водорода велико. [c.448]

    Для каждой партии низкотемпературных элементов готовится овеж нй раствор солей платины и палладия (0,0125 г Р1С14, растворенной в 0,75 мл дистиллированной воды, с добавлением 0,0125 г РёСЬ при тщательном перемешивании). Раствор наносится по капле (всего восемь капель) на белый шарик. После нанесения каждой капли шар ик прогревается при этом происходит восстановление металлов из солей раствора. В конечном итоге на шарике носителя образуется черная матовая [c.135]

    Физические и химические свойства. Р.— серебристо-белый, похожий на платину металл, тугоплавкий и очепь твердый даже при высоких темп-рах. Для него известны аморфное (скрытокристаллическое) и кристаллич. состояния. Аморфный Р.— черный порошок, образуется при восстановлении металла из р-ров. После перекристаллизации аморфного Р. из расплава с 5—6-кратным количеством Sn и обработки плава хлористым водородом получают светло-серые кристаллы кубич. формы. Кристаллич. решетка гексагональная с плотнейшей упаковкой, а = 2,7057 A, с == =4,2815 A. На основании измерений уд. теплоемкости и термич. коэфф. сопротивления было установлено существование 4 полиморфных модификаций Р. и определены темп-ры фазовых переходов а , 1035° Y, 1190° у б, 1500°. Атомный радиус Ru 1,338 A ионные радиусы Ru2+0,85 A Ru= +0,77A Ru +0,71A. Плотн, 12,4 (20°).Т. пл. 2250° т. кип. 4900° (вероятно) теплота плавления 46 кал1г теплота испарения (при т. нл.) 1460 кал1г давление пара 9,8-10 мм рт. ст. Уд. теплоемкость 0,057 кал/г-град (0°) термич. коэфф. линейного расширения 9,1 10" (20°).Уд. электросопротивление 7,16—7,6 мком-см (0°) термич. коэфф. электросопротивления 44,9-10 (0—100°). Р. парамагнитен, уд. магнитная восприимчивость 0,426-10 (20°). Механич. свойства Р. (при комнатной темп-ре) модуль нормальной упругости 47 200 кГ/мм , твердость по Бринеллю (отожженного) 220 кГ/мм . [c.361]

    Парафиновые и олефиновые углеводороды, содержащие шесть и более углеродных атомов в прямой цепи, могут быть подвергнуты дегидрированию и циклизации до ароматических углеводородов с тем же числом углеродных атомов. Для осуществления этой реакции можно использовать два типа катализаторов 1) окислы металлов и 2) восстановленные металлы. В качестве окисных катализаторов применяют главным образом окись хрома, окись молибдена и окись ванадия в чистом виде или еще лучше на носителе, например на окиси алюминия. В качестве металлических катализаторов применяют металлы vni группы периодической системы, главным образом никель или платину на носителе типа окиси алюминия. При дегидроциклизации на поверхности окисных катализаторов наряду с образованием ароматических соединений происходит образование олефинов. Образование олефинов представляет собой, по-видимому, промежуточную стадию процесса их выход, как правило, не превышает 10%. Исходный углеводород можно полностью превратить в ароматический, применив соответствующий катализатор. Наиболее эффективным катализатором в случае проведения реакции при атмосферном давлении является окись хрома (СГдОд), которую обычно наносят на окись алюминия либо путем пропитки, либо совместным осаждением обоих окислов. [c.141]

    В 1906 г. появилось первое сообщение Фокина о роли водородистых металлов в реакциях восстановления непредельных жирных кислот [63]. В сообщении указывалось, что пары амилового эфира олеиновой кислоты над платиной гидрируются в эфир стеариновой кислоты. Вслед за этим была изучена гидрогенизация эруковой, мезаконовой, итаконовой и других кислот [64], а также некоторых распространенных растительных масел [65]. Катализаторами гидрогенизации служили платиновая чернь и восстановленные палладий ( водородистый палладий ), никель и кобальт, т. е. катализаторы, которыми пользовался в свое время Зайцев (Pt и Рё) и с 1897 г. Сабатье (N1, Со). На работы этих ученых ФокИн делает соответствующие ссылки. Однако, в отличие от тех пособов контакта реагента с катализатором, которыми пользовались Зайцев и Сабатье, Фокин применяет иной способ он суспендирует порошки восстановленных металлов в эфире, а затем в масляной или валериановой кислотах, т. е. в растворителях, и гидрогенизацию ненасыщенных кислот осуществляет при постоянном токе водорода в растворе. Это, казалось бы, незначительное нововведение явилось исключительно важным шагом в дальнейшем развитии катализа. [c.58]

    Сернистый ангидрид. Восстановление железа сернистым ангидридом может также давать более точные результаты по сравнению с получаемыми при использовании хлорида олова (II), по эта операция протекает гораздо медленнее, так как приходится принимать особые меры предосторожности, чтобы быть уверенным в полноте восстановления железа и в удалении избыка сернистого газа. Вещества, мешающие восстановлению, здесь не так многочисленны, как при восстановлении хлоридом олова (II). В их число входят платина некоторые металлы сероводородной группы (например, медь, мышьяк, сурьма) и ванадий. [c.444]

    Восстановление металлами ( цементация ). Платина, палладий, родий, иридий и золото могут быть осаждены в виде металлов при действии на слабокислые растворы их солей цинка, магния, меди и железа [8, 39—43]. -Выделяющиеся осадки металлов почти всегда содержат примененный для осаждения металл. Они могут содержать также примеси других элементов, находившихся в растворе. Большое влияние на полноту осаждения платиновых металлов оказывает кислотность раствора чем она выше, тем больше возможность растворения выделяющегося металла. Повышение концентрации солей в растворе (хлори-стапо натрия, хлористого аммония и других) уменьшает степень извлечения платиновых металлов цементацией. [c.253]

    Иногда при осаждении в присутствии коллектора образуется соединение между коллектором и осаждаемым веществом. Так, гидроокись железа легко осаждает мышьяк (III) и (V) и фосфор, образуя малорастворимые арсенит, арсенат и фосфат железа. Осаждение микрокомпонента может быть более полным, чем можно было бы предполагать по растворимости образовавшегося соединения, вследствие того, например, что гидроокись железа сильно адсорбирует арсенат железа из его насыщенного раствора. Другой случай образования соединения при осаждении встречается при использовании теллура в качестве коллектора для золота, платины и палладия. Эти металлы количественно осаждаются при добавлении восстановителей (например, SO2 или Sn b) к раствору их солей, содержащему небольшие количества теллурита щелочного металла. Вероятно благородные металлы образуют при этих условиях теллуриды и осаждаются как таковые совместно с восстановленным теллуром. Однако осаждение этих металлов было бы полным и в том случае, если бы образование соединения и не происходило и восстановленные металлы действовали бы просто как кристаллизационные центры для элементарного теллура. Последний тип собирания следов определяемого элемента иллюстрируется станннтной реакцией на висмут в присутствии солей свинца. Восстановленный висмут образует зародыши кристаллизации, на которых быстро отлагается свинец в отсутствие висмута восстановление свинца станнитом происходит очень медленно Этот частный случай почти не имеет практического значения для количественного анализа, но аналогичные случаи могут найти прйме-нение. [c.36]


Смотреть страницы где упоминается термин Платина восстановление до металла: [c.102]    [c.91]    [c.454]    [c.35]    [c.38]    [c.91]    [c.152]    [c.13]    [c.651]    [c.92]    [c.407]    [c.392]    [c.651]    [c.619]    [c.416]    [c.75]    [c.448]    [c.143]   
Практическое руководство по неорганическому анализу (1966) -- [ c.417 ]

Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.108 , c.109 , c.111 ]

Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.2 , c.69 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление металлами

Металлы платина

Металлы платино



© 2025 chem21.info Реклама на сайте