Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграмма А Si СаО критической

    Взаимное расположение на Р — Т диаграмме критических точек К, М и N зависит от состава с1[еси. Для углеводородных смесей критическая точка К может лежать как между точками М [c.20]

    Для трубопровода, для которого диаграмма критических размеров трещин характеризуется кривой 2, возможно существование устойчивых сквозных трещин (кривая /). Следовательно, обеспечение безопасности эксплуатации таких трубопроводов на основе концепции ТПР возможно. [c.14]


Рис. 7. Диаграмма критических размеров поперечных трещин для Рис. 7. Диаграмма критических <a href="/info/357074">размеров поперечных</a> трещин для
    Критические температуры двух чистых веществ соединяются на диаграммах критическими точками различных смесей этих веществ. Кривые критических точек для различных бинарных систем даны на рис 8 [7]. [c.22]

    Как видно из диаграммы, критическая степень сжатия снижается при присоединении к циклопентановому кольцу одной боковой цепи, причем это снижение тем более значительно, чем больше длина замещающей группы. [c.23]

    Оконных диаграмм Оконных диаграмм Оконных диаграмм Оконных диаграмм Оконных диаграмм Оконных диаграмм Оконных диаграмм Оконных диаграмм Критических зон Критических зон Полного факториала Полного факториала Полного факториала Полного факториала Симплексной решетки Симплексной решетки Симплексной решетки Расширенной решетки Полного факториала Ограниченного факториала Модифицированной решетки [c.290]

    Появившиеся при температуре двойной критической точки две области гетерогенного равновесия в системе не одинаковы но своему характеру. Одна из них содержит азеотропную смесь с максимальным давлением пара, и линия азеотропов в ней будет существовать до тех пор, пока параметры смеси не достигнут критической кривой. В другой области никаких особенностей нет. Вид ее напоминает вид диаграммы и—Л г—Т для систем без азеотропов. При отходе от двойной критической точки на изотермах равновесия V—N2 должны появиться точки максимального соприкосновения. Критические точки на диаграмме не будут лежать более при экстремальном составе. Из направления нод (см. рис. 2.23) можно понять, что в рассматриваемой сейчас части фазовой диаграммы критическая точка на изотермах будет сдвинута в сторону ветви пограничной кривой для жидкой фазы. Ведь с повышением температуры знак (но не значение) производной дv дNг)p,т,тe не изменяется. Он сохраняется постоянным вплоть до критической точки чистого компонента. Это может осуществиться только в том случае, если критическая точка смеси будет сдвинута на пограничной кривой в сторону кривой для жидкой фазы. Тогда, следовательно, точка максимального соприкосновения должна лежать на ветви изотермы для газовой фазы. Здесь будет наблюдаться явление обратной конденсации первого рода. [c.103]


    Дальнейшее повышение давления будет сопровождаться падением критической температуры смеси, так как системы с положительным азеотропом имеют температурный минимум на критической кривой. Поэтому всегда на одной части ее критическое давление и температура будут изменяться симбатно, а на другой — в противоположные стороны. Положительный азеотроп обладает минимальной равновесной температурой. Поэтому в этой части диаграммы критическая точка смеси на изобарах равновесия Т— N2 будет находиться не при минимальной, а при максимальной температуре. Точка максимального соприкосновения Я лежит при этом на ветви жидкой фазы. Здесь, следовательно, при изобарическом равновесии должна быть область обратной конденсации второго рода. [c.124]

    Представленная на фиг. 10 а диаграмма температура рас-слоения--состав для хорошо известной системы фенол—вода состоит из двух граничных ветвей ОК и К, отделяющих гетерогенную Б жидкой фазе область частичного смешения от гомогенных областей полного смешения. Все смеси, фигуративные точки которых располагаются вне области, ограниченной кривой ОКР, являются однородными в жидкой фазе и легко реализуются практически. Смеси же, фигуративные точки которых попадают в область, ограниченную этой кривой, неустойчивы, практически нереализуемы и распадаются на два слоя, составы которых при данной температуре определяются абсциссами точек пересечения соответствующей изотермы с граничными ветвями ОК и РК кривой растворимости. Точка слияния К обеих граничных ветвей соответствует изотерме, отвечающей критической температуре растворения компонентов системы и называется критической точкой растворимости. [c.19]

    При рассмотрении диаграмм равновесия однородных в жидкой фазе азеотропов было установлено, что в некоторых случаях равновесная температура кипения жидкого раствора компонентов, характеризующихся при обычных температурах свойством частичной растворимости, может оказаться выше их критической температуры растворения. Тогда система приобретает свойства положительного азеотропа, однородного в жидкой фазе, с минимумом точки кипения (см. фиг. 15). С другой стороны, там же указывалось, что при фракционировке подобного, однородного в жидкой фазе азеотропа, независимо от начального состава а исходной смеси, продуктами разделения будут либо один, либо другой компонент системы в практически чистом виде и азеотроп состава или пар, близко подходящий к нему по составу. При этом азеотроп обязательно будет верхним продуктом колонны, так как он кипит при более низкой температуре, чем оба компонента системы. Превзойти наверху колонны состав у азеотропа не представляется возможным, ибо, как известно, составы жидкости и пара в азеотропической смеси равны и неизменны, температура ее выкипания и конденсации постоянна и поэтому при достижении этой точки ректифицирующая работа колонны сейчас же прекращается. [c.133]

    На диаграмме х—у (рис. 36) по оси абсцисс откладываются составы жидкости Хг, по оси ординат — равновесные составы паров 1/ . Кривая 0В "1 является линией равновесия при данном давлении. При повышении давления кривая равновесия все более приближается к диагонали 01, в каждой точке которой состав паров равен составу жидкости и разделение компонентов становится невозможным. Именно поэтому давление ректификации должно быть существенно ниже критического. Чем на большем расстоянии от диагонали расположена линия равновесия, тем более пары обогащены легколетучим компонентом НКК, тем легче их получить практически в чистом виде. [c.110]

    Здесь А й В обозначают возбужденные молекулы А и В с критической энергией Е. При этом А является любой формой активных частиц, которые могут возникнуть при активации молекул А при дезактивации возбужденных частиц А могут образоваться только молекулы А. Возбужденные молекулы В определяются аналогично . Эту схему можно представить в виде диаграммы потенциальной энергии, как показано на рис. XI. 1, где приведено сечение поверхности потенциальной энергии, соответствующее минимальным величинам 17 для различных величин Ь. Все состояния слева от о являются состояниями А или А, правее — В или В. Как следует из рис. XI.1, реакция эндотермична, так как минимум энергии для В располагается выше, чем минимум энергии для А. Разность этих двух энергий соответствует тепловому эффекту реакции А . [c.204]

    Для расчета энтальпии, энтропии и мольной теплоемкости жидких веществ в области высоких давлений также можно использовать универсальные диаграммы, подобные представленным на рис. У1-6—У1-8. Однако такие расчеты проводятся очень редко, поскольку заметное влияние давления на энтальпию, энтропию и мольную теплоемкость жидкостей можно обнаружить лишь вблизи критической точки [12]. [c.175]

    Диаграмма с тремя отдельными бинодальными кривыми, концы которых находятся соответственно на трех сторонах треугольника, возможна только тогда, когда температура системы приближается к критической температуре одного из компонентов. Была найдена 21 такая система, в каждой из которых [c.178]


    С изменением температуры две кривые могут вытягиваться до их слияния, как это описано выше, в результате чего на диаграмме образуются полоса и отдельная область (рис. 23) [12]. Эта область затем может расшириться п коснуться полосы в се критической точке экстракции, а затем пересечь полосу с образованием треугольной площади сосуществования трех жидких фаз (рис. 24) [17]. [c.179]

    Обобщая полученные результаты и опираясь на многочисленные расчеты, следует сказать, что, заменяя в некоторой области диаграммы реальный газ идеальным, у которого / у < I, мы получаем значения КПД, удовлетворяющие нас по точности совпадения с действительными значениями. То обстоятельство, что при йу < 1 в процессе сжатия i) o < ( ,, а в процессе расширения 1]пол > 4s. > огя в реальном рабочем веществе все будет наоборот, может быть препятствием к применению метода условных температур только при ky <<С 1. Однако, как показывает опыт, даже для такого вещества как R12, обладающего высокой сжимаемостью, средние значения показателя изоэнтропы ky, определенные по формулам (3.47) и (3.48) для конечных интервалов давлений, становятся меньше единицы только в области, близкой к критической точке, и отличаются от нее не более чем на 2—4 %. При таких близких к единице значениях ky изоэнтропный и политропный КПД практически совпадают независимо от того, будет k , больше единицы или меньше ее. [c.123]

    В качестве примера объемной диаграммы на рис. ХП, 2 представлена схема диаграммы состояния двуокиси углерода. Она образована поверхностью Тв, отвечающей твердой фазе, и поверхностями Ж и Г, отвечающими жидкой и газообразной фазам. Поверхности Ж и Г при температурах выше критической непрерывно переходят одна в другую. [c.357]

    Жидкие трехкомпонентные системы могут состоять из жидких веществ, как дающих растворы любого состава, так и взаимно ограниченно растворимых. В последнем случае на диаграмме состояния появляется область расслаивания. Фигуративной точке системы, лежащей внутри этой области, отвечают фазовые фигуративные точки двух растворов, на которые распадается система. Так же как и в двух компонентных системах, взаимная растворимость трех компонентов зависит от температуры, и в некоторых случаях при соответствующей критической температуре наступает взаимная неограниченная растворимость всех трех компонентов. Область ограниченной растворимости может иметь различные очертания. [c.433]

    На рис. XV, 10 критическая точка растворимости к лежит в плоскости одной из боковых граней объемной диаграммы, но это лишь частный случай. Существуют системы, в которых критическая точка растворимости лежит внутри диаграммы на вершине некоторой куполообразной поверхности или в нижней точке перевернутого купола. [c.434]

    Все свойства вещества, описанные в двух предыдущих разделах, могут быть представлены с помощью фазовой диаграммы-графика зависимости давления от температуры, указывающего условия, при которых твердая, жидкая или паровая фаза является термодинамически устойчивой формой вещества, и те условия, при которых две или даже все три фазы находятся в равновесии друг с другом. Показанная на рис. 18-6 фазовая диаграмма СС>2 типична для веществ, которые расширяются при плавлении, что случается чаще всего. Уже знакомая нам кривая зависимости равновесного давления пара от температуры простирается от тройной точки, где твердая, жидкая и паровая фазы находятся в равновесии, до критической точки. Вдоль этой линии жидкость и газ находятся в равновесии. Жидкость является устойчивой фазой выше этой кривой, а пар-устойчивой фазой ниже нее. [c.131]

    Диаграмма критической массовой скорости как функции эптальпни торможения для пароводяного потока, рассчитанная по моделр гомогенного равновесного течения, приведена на рис. 35. Здесь давление торможения Ра в точке, предшествующей соплу, определяется следующим образом  [c.203]

    Если известны составы сосуществующих фаз при нескольких температурах, то, пользуясь рассмотренными соотношениями, можно предсказать температуру и состав смеси в критической точке растворимости. Для определения состава смеси в критической точке находят по данным о взаимной растворимости при нескольких температурах значения констант А тз. В и полученные значения откладывают на графике (рис. 82 или 83). Через найденные таким образом точки проводится кривая, которая экстраполируется до пересечения с пограничной кривой. Такой расчет показан на рис. 83 на примере системы метилэтилкетон — вода. Кривая аЬ является геометрическим местом точек, координатами которых являются значения констант А ж В при различных температурах. Точка пересечения а линии аЪ с пограничной кривой определяет положение на диаграмме критической точки растворимости. Ей соответствуют значения констант Л = 1,23 и 5 = 0,40. Искомый состав смеси в критической точке растворимости определяется путем нахождения линии — = onst, проходящей через точку а. [c.250]

    Для перевода нефтяных месторождений в газоконденсатные путем добавления в нефтяную систему метана или других легких углеводородов фазовая диаграмма р—Т при V = onst также сдвигается влево и вверх. После осуществления процесса необходимо, чтобы на новой фазовой диаграмме критическая температура была меньше пластовой температуры. Необходимый для растворения объем газа должен обеспечить минимум дефицита температуры, равный [c.211]

    Уравнение Ван-дер-Ваальса дает достаточно точные результаты для всех газов даже в области их критических температур и давлений. Однако при высоких давлениях, когда плотность газа велика или когда газ находится вблизи точки сжижения, это уравнение дает значительные отклонения от действительного поведения газа (ср. приведенные выше примеры 2 н 3). Отклонения объясняются тем, что при большой плотности газа иа его давление оказывают влияние не только силы взаимного притяжения, но также и силы взаимного отталкивания частиц, обусловленные внешними электронными оболочками этих частиц. Кроме того, здесь на реальное поведение газа в значительной мере также оказывают влияние неупругие столкновения его частиц и другие факторы. В связи с этим, кроме уравнения Ван-дер-Ваальса, был предложен ряд других, более сложных уравнений для реального состояния газов, на которых мы здесь останавливаться не будем, так как они для ггракгики технологических расчетов интереса не представляют. Уравнением Ван-дер-Ваальса в производственных расчетах также пользуются довольно редко наиболее удобными и более точными для этого являются энтропийные диаграммы (глава IV, стр. 103). [c.57]

    Работа по развитию нового метода заканчивается составлением технологической схемы и детальным критическим анализом процесса. В целях завершения анализа процесса рассчитываются общие материальный и энергетический балансы и вычерчиваются диаграммы потоков (типа Санкея). На этой основе устанавливаются коэффициенты расхода веществ, энергии, вспомогательных материалов и т. д. Анализом расположения аппаратов в технологической цепочке определяется количество требуемых рабочих. Составляются ориентировочная смета строительства и предварительная калькуляция издержек производства. Проводится экономический анализ, в котором сравниваются стоимость изготовления продукта новым методом и стоимость его производства существующими методами. [c.13]

    Применение теории соответственных состояний для определения свойств смесей. В принципе, универсальные диаграммы, построенные для чистых (индивидуальных) веществ, могут применяться для определения свойств смесей. Однако в этом случае возникает трудность, связанная с расчетом приведенных параметров, поскольку неизвестно, какие критические постоянные Р1ужно использовать в уравнениях (1У-40). Кэй предложил вычислять значения критических постоянных аддитивно, суммируя составляющие, пропорциональные этим критическим постоянным и мольным долям компонентов смеси. Рассчитанные таким способом величины получили название псевдокритических параметров смеси (индекс рс ). [c.100]

    Приближенная зависимость коэффициента сжимаемости г от приведенных температуры Тг—Т1Тс и давления рг = р1р (где Тс и рс — критические значения) для всех реальных газов представлена на рис. На основе этой диаграммы Нельсон и Додж составили универсальную диаграмму зависимости коэффициента активности у от приведенных параметров Тг и рг (рис. У1-5). [c.166]

    С понижением температуры обе кривые вытягиваются , приблин<аясь друг к другу. Первая точка их контакта появляется при температуре, соответствующей седлообразной точке (14,1° для приведенной системы). Эта точка является критической точкой экстракции для каждой кривой, 1 ак как она находится на вершине гребня (пунктирная линия) модельной треугольной призмы. В некоторых работах [22, 30, 41] без достаточных доказательств приводятся идеализированные диаграммы , на которых показан внешний контакт выпуклых бинодальных кривых в других точках, в результате чего образуется треугольная трехфазная область. Но в отношении таких графиков имеется ряд теоретических возражений [9Ь]. Одно из таких возражений состоит в том, что нарушается упомянутое выше правило Шрейпемакерса. [c.177]

    Для дальнейшей проверки этого вывода был проделан следуюгций опыт. Температура плавления образца фенантрена (100°) была понижена до 60° добавлением 44% (от всей смеси) на алина при этом также образовывались два слоя с пропаном, если температура не превышала 74° (верхняя кртическая температура растворения). Система была гомогенной при температуре от 74 до 76° (верхняя критическая температура растворения), а при еще более высокой температуре опять происходило разделение на две фазы. Это явление, аналогичное тому, которое описывается диаграммой рис. 17, по-видимому, наблюдалось впервые. [c.198]

    В 1868 г. Д. К. Чернов впервие указа.л на существование определенных температур ( критических точек ), зависящих от содержания углерода в стали и характеризующих пре-пращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Ре—С, а 1868 г. стал годом возникновения металловедения — науки о строении и свойствах металлов и силавоп. [c.673]


Смотреть страницы где упоминается термин Диаграмма А Si СаО критической: [c.161]    [c.334]    [c.71]    [c.38]    [c.52]    [c.72]    [c.28]    [c.49]    [c.131]    [c.93]    [c.96]    [c.139]    [c.169]    [c.175]    [c.177]    [c.282]    [c.398]    [c.398]    [c.673]    [c.207]   
Правило фаз Издание 2 (1964) -- [ c.214 ]




ПОИСК







© 2025 chem21.info Реклама на сайте