Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ток обмена и адсорбция анионов

    При адсорбции из растворов, наряду с поглощением нейтральных молекул, может происходить и адсорбция ионов, содержащихся в растворе. Это приводит к некоторым своеобразным явлениям. Например, основной (по своим химическим свойствам) краситель, у которого окрашенный ион заряжен положительно, адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, и наоборот. Подобные процессы называются полярной адсорбцией и обычно сопровождаются явлением обмена ионами ионного обмена) между адсорбентом и раствором — явле нием, называемым обменной адсорбцией. Так, метиленовая синяя — основной (по химическим свойствам) краситель, адсорбируется отрицательно заряженными гелями, в частности гелем кремневой кислоты. При этом, однако, на кремневую кислоту переходит лишь положительно заряженный ион красителя, а отрицательный ион (ион хлора) остается в растворе. Компенсация зарядов этих анионов достигается тем, что из кремневой кислоты переходит в раствор ион натрия, который в небольшом количестве почти всегда содержится в геле кремневой кислоты при обычных способах его приготовления. [c.372]


    Рассмотрим более подробно явление обменной адсорбции на примере с глинами. Глины являются адсорбентами, способными к обмену катионами и анионами. Обменная способность глин обусловлена, главным образом, глинистыми минералами и частью органическими соединениями. Обш,ее количество обменных ионов глины, выраженное в милли-эквивалентах на 100 г породы, называется емкостью поглощения. Главными поглощенными катионами в гли- [c.292]

    Обменная адсорбция имеет большое значение в земледелии, биологии и технике. Почва способна поглощать и удерживать определенные ионы, например катионы К и NH4, содержащиеся в удобрениях и необходимые для питания растении. Взамен этих катионов почва выделяет эквивалентные количества других катионов, например Са + и Анионы, как, например, СГ, NO3, SOf, почти не поглощаются почвой. Согласно К. К- Гедройцу (1933 г.), детально исследовавшему явление обмена ионов в почве, поглощать основания способен так называемый поглощающий комплекс— высокодисперсная смесь нерастворимых алюмосиликатов и органоминеральных соединений. От природы поглощенных ионов в значительной мере зависят физические и агротехнические свойства почвы. [c.150]

    Давыдов Л. Т., Давыдова Р. 3., Исследование обменной адсорбции анионов на синтетическом ионите. Ученые записки Харьковского государственного университета, 54. Труды химического факультета и Научно-исследовательского института химии ХГУ, 12, 283 (1954). [c.219]

    Применение пермутитов позволяет устранить жесткость воды, но не обеспечивает ее деминерализацию. За последние годы удалось добиться значительных успехов и в деминерализации воды путем применения адсорбентов, способных к обменной адсорбции. В частности для этих целей находят все более широкое применение различные синтетические смолы, способные к обмену как катионов, так и анионов. При пропускании обычной водопроводной воды через систему с измельченными смолами происходит замена всех катионов раствора ионами водорода, а анионов — ионами гидроксила, что позволяет получить воду, по качеству не уступающую дистиллированной. Смолы могут быть регенерированы. Возможность получать при помощи адсорбентов дистиллированную воду имеет большое значение для питания водой котлов высокого давления и в ряде других производств (пивоварения, текстильного, аккумуляторного, фармацевтических и фотографических препаратов, химически чистых реактивов и др.). Синтетические смолы также находят применение для улавливания ценных веществ из очень разбавленных растворов (например, меди из рудничных вод). [c.294]

Рис. 143. Схема обменной адсорбции анионов и катионов солей протоплазмой Рис. 143. Схема обменной адсорбции анионов и <a href="/info/869974">катионов солей</a> протоплазмой

    Наконец, в-четвертых, при обменной адсорбции может изменяться pH среды. Это наблюдается в том случае, когда ионом, обмениваемым адсорбентом, является водородный или гидроксильный ион. Если адсорбент заменяет на какой-нибудь катион водородный ион, то последний, поступая в раствор, уменьшает pH среды, при этом адсорбент ведет себя подобно кислоте. Если адсорбент меняет на какой-нибудь анион гидроксильный ион, то pH раствора, наоборот, увеличивается, причем адсорбент ведет себя как основание. Наглядно обмен ионов в обоих этих случаях можно-изобразить следующими схемами  [c.149]

    Н. А. Шилов объяснял обменную адсорбцию на обеззоленном угле с совершенно иных позиций. Согласно Н. А. Шилову, при получении или активировании угля на его поверхности возникают тончайшие слои окислов, не являющиеся новой фазой и прочно связанные с кристаллической решеткой.адсорбента. Эти окислы, образующиеся на поверхности угля, полученного в одних условиях, реагируя с водой, могут давать карбоксильные группы, способные обменивать водород на катион. Иначе говоря, такой уголь будет вести себя как кислота. При получении угля в других условиях на его поверхности могут образоваться при взаимодействии с водой гидроксильные группы. Такой уголь способен обменивать гидроксил на анион, и, таким образом, он является основанием. Если получение или активирование угля проводить при промежуточном режиме, когда на его поверхности образуется примерно одинаковое число групп первого и второго типа, то уголь будет обладать амфотерными свойствами и изменения pH раствора не наблюдается. [c.153]

    ОН поступают взамен " анионов в раствор, т. е. идет обменная адсорбция, изменяющая pH системы. Такую адсорбцию принято называть гидролитической. [c.153]

    Адсорбция анионов на стекле происходит по ионообменному механизму, и в сильнокислых растворах поверхность электрода приобретает свойства анионита, подобно тому как в щелочных растворах поверхность приобретает свойства катионита, чем и объясняется сходство ошибок стеклянного электрода в кислой и щелочной областях. Анионный обмен на поверхности электрода связан с некоторой амфотерностью кремневой кислоты, благодаря которой проявляются основные свойства у соединений кремния в набухшей пленке стекла. Гидратированная окись кремния в очень кислых растворах проявляет свои основные свойства в том, что она присоединяет протон водорода реакция идет с образованием соли катионной кислоты [c.435]

    В ионной адсорбции на минеральных адсорбентах часто наблюдается еще одно интересное явление — так называемый ионный обмен, или обменная адсорбция ионов. Обменная адсорбция ионов заключается в том, что твердая фаза, практически не растворимая в воде, способна поглощать из раствора катионы или анионы, выделяя одновременно в раствор эквивалентное количество катионов или анионов другого рода. Обменная адсорбция имеет специфический характер, т. е. в ней играет большую роль химическая природа твердой поверхности и адсорбируемого иона. [c.70]

    И. Н. Антипов-Каратаев изучил обменную адсорбцию на амфотерных адсорбентах типа алюмосиликатов и показал зависимость этого процесса от изменения кислотности среды. При высоких значениях pH наблюдается преимущественно обмен катионов, при низких значениях pH преобладает обмен анионов. [c.293]

    На обменную адсорбцию сильно влияет как природа твердой фазы и имеющиеся на ней ионы двойного электрического слоя, так и природа адсорбируемого иона. В зависимости от химической природы ионов, которые могут обмениваться с ионами, содержащимися в адсорбентах, различают кислотные и основные адсорбенты. Кислотные адсорбенты ведут себя подобно кислоте и способны обменивать с растворами катионы. Основные адсорбенты сходны по свойствам с основаниями и обменивают анионы. Известны амфо-терные адсорбенты, которые в зависимости от условий обменивают либо катионы, либо анионы. [c.272]

    Оценка сорбционных свойств исследуемых нерудных ископаемых была проведена на примере очистки воды от красителей, диссоциирующих в ней на ионы, и от металлов. В результате установлено, что величина сорбции катионных красителей значительно превышает адсорбцию анионных, что определяется только физической сорбцией анионных красителей и дополнительным ионным обменом в случае катионных красителей. [c.12]

    Обменная адсорбция представляет собой процесс обмена ионов между раствором и твердой фазой — адсорбентом, точнее, обмен ионов между двойным электрическим слоем адсорбента и средой. При этом твердая фаза поглощает из раствора ионы одного знака (катионы или анионы) и вместо них выделяет в раствор эквивалентное число других ионов того же знака. [c.278]

    Обменная адсорбция специфична, т. е. для данного адсорбента к обмену способны только определенные ионы. Различают кислотные и основные адсорбенты. Кислотные адсорбенты, подобно кислотам, способны обменивать с растворами катионы основные адсорбенты ведут себя как основания и обменивают анионы. Существуют также амфотерные адсорбенты, которые в одних условиях обменивают катионы, а в других — анионы. [c.279]


    При обменной адсорбции может изменяться pH среды. Это наблюдается тогда, когда обмениваемый адсорбентом ион является водородным или гидроксильным ионом. Если адсорбент заменяют на какой-нибудь водородный ион, то последний, поступая в раствор, уменьшает pH среды. Если адсорбент меняет на какой-нибудь анион гидроксильный ион, то pH раствора, наоборот, увеличивается. Схематически обмен ионов можно представить следующими реакциями  [c.279]

    Если предположить, что поверхность металла незаряжена и су-ш,ествует специфическая адсорбция анионов, то на расстоянии радиуса аниона от поверхности появится адсорбционный слой анионов. Анионы притянут к себе электростатически катионы из раствора и на поверхности металла появится адсорбционный двойной электрический слой, расположенный на одно атомное расстояние дальше от границы металл — раствор в сторону раствора, по сравнению с обменным. [c.299]

    Если при обменной адсорбции адсорбент взамен адсорбированного катиона или аниона соли отдает ион водорода или гидроксила, то раствор соответственно приобретает кислую или щелочную реакцию. Такая обменная адсорбция называется гидролитической. [c.139]

    Адсорбция анионов на стекле происходит по ионообменному механизму, и в сильнокислых растворах поверхность электрода приобретает свойства анионита, подобно тому как в щелочных растворах поверхность приобретает свойства катионита, чем и объясняется сходство ошибок стеклянного электрода в кислой и щелочной областях. Анионный обмен на поверхности электрода связан с некоторой амфотерностью кремневой кислоты, благодаря которой проявляются основные свойства у соединений кремния в набухшей пленке стекла. [c.515]

    Эти адсорбционные данные хорошо согласуются с изложенными выше представлениями о слабых кислотных свойствах 8Юа. Действительно, процесс обменной адсорбции может быть представлен как результат поверхностных химических реакций обменного тина. В частности, адсорбцию катионов, сопровождаюш уюся вытеснением Н+-ионов в раствор, мы можем себе представить как обменную реакцию на поверхности 8102, сопровождающуюся образованием силикатов и кислот, соответствующих анионам вводимой соли. [c.111]

    Действительно, при коагуляции положительных золей рядом авторов наблюдалась, наряду с обменной адсорбцией анионов, и адсорбция Н+-ио-нов (повышение pH системы). Это показывает, что в адсорбционных процессах при коагуляции участвуют не только компенсирующие ионы коллоида, но и ионы, несущие заряд, но знаку совпадающие с зарядом частицы (Neben-ионы, по терминологии Паули). [c.104]

    Давыдов А. Т., Обменная адсорбция анионов нз смешанных сред на анионите ММГ . Научные доклады Высшей нгколы. Химия и химическая технология, № 2, 271 (1958). [c.219]

    Давыдов А. Т. Обменная адсорбция анионов на амииосмоле. Уч. зап. Харьк. ун-та, 1947, [c.40]

    При обработке анионита кислотой происходит связывание этой кислоты с образованием группы МНзЛ (где А — анион), аналогично получению хлористого аммония МН4С1. Таким образом, получается соединение кислоты со смолой — анионитом типа аммониевой соли, но вместо одного из атомов водорода в этой соли стоит многомолекулярный фенол-формальдегидный остаток. При пропускании-через колонну с анионитом кислот или солей происходит обменная адсорбция анионов смолой, и смесь разделяется на фракции, соответственно способности анионов к обмену со смолой — анионитом. Последующее вымывание соответственно подобранным растворителем, как при разделении катионов, приводит к прекрасному разделению анионов. [c.107]

    В. А. Каргин и сотрудники на основании своих исследований высказали точку зрения, согласно которой обменная адсорбция ионов в кислых и нейтральных средах на чистых и смешанных гелях 810.2, А12О3 и РеаОа не наблюдается. Адсорбция катионов, если она происходит, носит молекулярный характер и сопровождается адсорбцией эквивалентного количества анионов. При этом указывается, что адсорбция не является специфической для данного иона, а зависит от растворимости адсорбируемой соли. Если данный гель адсорбировал молекулярно какой-либо электролит, то при дальнейшем воздействии электролитов происходит эквивалентный катионный обмен. Эти соображения автор распространяет и на сложные силикаты, хотя последняя точка зрения встречает возражения. [c.118]

    Согласно современным представлениям поступление минеральных элементов из почвы в растение осуществляется путем обменной адсорбции. Немаловажное значение в этих процессах имеет углекислота корневых систем, диссоциирующаяся иа Н+- и НСО - ионы, способные обмениваться на катионы и анионы почвенного раствора. Источником иона водорода служат также различные органические кислоты, в заметных количествах образующиеся в корнях. Некоторые авторы считают 110, 151, что катионы из твердой фазы почвы могут поступать в корни растения путем контактного обмена. Поскольку в процессе питания растений ведущую роль играют процессы адсорбции, то на протяжении многИх лет делались попытки использовать естественные (цеолиты, глины) и синтетические (смолы) ионообменные материалы в качестве питательных субстратов для растений. О преимуществе и недостатках применения ионообменных материалов для указанных целей подробно сообщается в работе Э. Хьюита 116]. [c.245]

    Ионы ОН", находящиеся на поверхности оксида алюминия, как и гидроксилы коллоидного осадка гидроксида алюминия, способны к обмену с анионами н катионами. Так, способность к адсорбции - анионТ)в определяет избирательный характер поглощения из раствора анионов платичо лористоводородной кислоты и необходимость [c.70]

    Адсорбция слабых электролитов (например, органических кислот) большей частью не обнаруживает различий по сравнению с неэлектролитами. Растворенное вещество адсорбируется в виде молекул, поэтому этот процесс называют молекулярной адсорбцией. Адсорбция сильных электролитов сопровождается рядом новых явлений, связанных с зарядами свободных ионов. Наряду с эквивалентной адсорбцией обоих ионов наблюдаются специфические различия в адсорбируемости ионов. Одним из проявлений этой специфичности является обменная адсорбция. Сущность обменной адсорбции заключается в том, что адсорбент поглощает из раствора ионы одного знака, т. е. катионы или анионы, причем для сохранения электронейтральности поглощение сопровождается переходом из адсорбента в раствор эквивалентного количества других ионов того же знака заряда или образованием ионов при взаимодействии поверхности с раствором. Так, адсорбция на угле неорганических нейтральных солей (Na I, K l, KNO3 и др.) сопровождается подщелачиванием, т. е. по преимуществу адсорбируются анионы, а для сохранения электронейтральности раствора в него поступают ионы ОН". Такая адсорбция нейтральных солей получила название гидролитической адсорбции. [c.291]

    Если при обменной адсорбции взамен поглощаемого иона нейтральной соли адсорбент отдает в раствор эквивалентное количество ионов водорода или гидроксида, такая адсорбция носит назвяние гидролитической. Например, адсорбция на угле неорганических нейтральных солей (Na l, K l, KNO3) сопровождается подщелачива-нием, т. е. в данном случае по преимуществу адсорбируются анионы, а в раствор поступают ионы ОН . К гидролитической адсорбции относятся все случаи обменного выделения адсорбентом ионов Н+ или ОН независимо от того, образовались ли эти ионы в результате тех плп иных поверхностных процессов на адсорбенте или же содержались в нем заранее как составная часть молекул. Так, глинистые минералы (каолинит, монтмориллонит) могут участвовать в обменной адсорбции своими Н+-ионами. [c.362]

    Наконец, на обменной адсорбции основано также точное установление эквивалентной точки при титровании растворов в аналитической химии. Например, если раствор хлорида натрия титровать в присутствии флуоресцеина нитратом серебра, то пека в растворе имеется хотя бы небольшой избыток хлорида натрия, на поверхностн образующихся кристаллов Ag l будет возникать двойной электрический слой, состоящий из ионов h и ионов Na+. В результате этого, выделяющийся осадок будет-белым, а раствор имеет желто-зеленую окраску. Однако как только в растворе окажется небольшой избыток нитрата серебра, на поверхности кристаллов Ag l образуется уже двойной слой из ионов Ag"- к NO3. Так как окрашенный анион флуоресцеина обладает большой адсорбционной способностью, он вытеснит из двойного электрического слоя ион NO3 и в результате этого осадок окрасится в желто-зеленый цвет, раствор же станет бесцветным. Такое изменение окраски наступает весьма резко, что позволяет легко устанавливать эквивалентную точку при титровании. [c.151]

    Обнаружен ионный обмен между катионами твердой фазы и полиэлектролита, а также анионный обмен между анионами сорбента и полимера. Влияние конформации молекул сорбента на величину адсорбции с переходом глобулярного типа надмолекулярной структуры полимера в фибриллярный выражается в увеличении адсорбции. Адсорбция ПАВ частицами дисперсной фазы из разбавленных растворов, где вероятность столкновения молекул растворенного вещества мала, отличается от адсорбции из концентрированных растворов. В обоих случаях общим служит наличие индукционного периода адсорбции из растворов. Установлено, что чем гидрофильнее сорбент, тем больше этот период. Это обусловлено тем, что адсорбционное взаимодействие в системе твердая фаза — вода — ПАВ начинается после завершения смачивания водой поверхности частиц твердой фазы и формирования гидратного слоя. Таким образом, адсорбционные взаимодействие в данном рассматриваемом случае осуществляется через молекулы воды [19]. По-видимому, этот механизм адсорбции является общим, так как обнаруживается увеличение адсорбции полярных молекул из неполярной среды с ростом количества предсорбированной [c.199]

    Благодаря обменной адсорбции твердый адсорбент, практически нерастворимый в воде (или другом растворителе), вступает в активное взаимодействие с соприкасающимся с ним раствором. Ионообменный процесс протекает так, что при адсорбции электролитов избирательно адсорбируются катионы или анионы, заменяющиеся на эквивалентное количество ионов того же знака, содержащихся в адсорбенте. Адсорбенты, способные к ионному обмену, встречаются и в природе (некоторые силикаты и алюмосиликаты, пермутиты и др.), а также изготовляются специально (например, сульфоугли) и синтезируются (ионообменные смолы). [c.189]

    Но иногда вещество адсорбируется необратимо в отношении чистого растворителя. Этот тип необратимой адсорбции характерен для коллоидов, подвергающихся коагуляции, и случаев, когда адсорбент удерживает адсорбированное вещество вследствие химических изменений, происшедших во время адсорбции. Обменная адсорбция — это типичный случай необратимой адсорбции. Обменная адсорбция происходит, когда адсорбентами являются нерастворимые электролиты, напримерг кремневая кислота, каолин, гидроокись железа, гидроокись алюминия и т. д., причем анионы и катионы адсорбируются в разной степени. Обменная адсорбция хорошо обнаруживается при применении легко адсорбируемых солей, кислот и органических красителей. В некоторых случаях только [c.88]

    При адсорбции из растворов электролитов наряду с поглощением нейтральных молекул наблюдается и адсорбция ионов, находящихся в растворе, например краситель метиленовый синий, основной по своим химическим свойствам, у которого положительно заряженный ион адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, в частности на силикагеле, а отрицательный ион — ион хлора — остается в растворе. Для компенсации заряда этого аниона из силикагеля переходит в раствор ион натрия, всегда содержащийся в небольшом количестве в силикагеле. Такая избирательная адсорбция одинаковых ионов растворов электролита, сопровождающаяся одновременно вытеснением соответствующего иона из адсорбента, называется обменной, полярной или ионообменной. При обменной адсорбции происходит обмен ионами в эквивалентных количествах, благодаря чему элек-тронейтральность растворов остается ненарушенной. По этой жё причине электронейтральность остается ненарушенной и на поверхности адсорбента. Обменная адсорбция протекает более медленно, чем обычная. [c.139]

    Для выяснения механизма адсорбции анионов мы исследовали также адсорбцию ионов натрия из растворов НС1 от 0,6 до 6 и. и иопоБ кальция из растворов HNO3 с pH=0,5. Исследование показало, что адсорбция ионов натрия за несколько часов погружения достигла порядка атомов на см , в то время как адсорбция ионов брома в этих же условиях составляла 10 атомов а см , т. е. адсорбция ионов натрия составляет 0,1% от величины адсорбции ионов брома. Адсорбция ионов Са++ не наблюдалась. Из этого следует, что адсорбция анионов на стекле происходит по ионно-обменному механизму и что в сильнокислых растворах поверхность электрода приобретает свойства анионита, подобно тому, как в щелочных растворах поверхность приобретает свойства катионита, чем и объясняется подобие ошибок стеклянного электрода в кислой и щелочной областях. Анионный обмен на поверхности электрода связан с некоторой амфо-терностью кремневой кислоты, благодаря которой проявляются основные свойства у соединений кремния в набухшей пленке стекла. [c.856]

    Первичная адсорбция, при которой адсорбируемые ионы входят в состав поверхности осадка, подразделяется на первичную, потенциа-лобразующую и первичную обменную адсорбцию. В потенциалобра-зующей адсорбции принимают участие только те ионы, которые могут входить в кристаллическую решетку осадка, т. е. одноименные или изоморфные ионы. Для радионуклидов, находящихся в крайне разбавленном состоянии, этот вид адсорбции играет незначительную роль, поскольку радионуклиды не могут обеспечить создания достаточного избытка одного из ионов на поверхности кристаллов, обусловливающих появление на поверхности заряда и скачки потенциала. Избыток того или иного иона микрокомпонента на поверхности наблюдается как в силу неодинакового средства собственных катионов и анионов к поверхности кристалла, так и из-за избытка одного из ионов в растворе. Потенциалобразующая адсорбция косвенно имеет большое значение для адсорбции радионуклидов, поскольку ее величина определяет общую емкость по отношению к вторичной обменной адсорбции. [c.321]

    Это совпадение подтверждает правильность предположе-1ШЯ о ионно-обменном механизме адсорбции анионов. [c.860]

    С этой точки зрения можно сказать, что в настоящее время экспериментальные данные, позволяющие непосредственно судить об эквивалентности или неэквивалентности обменной адсорбции компенсирующих ионов в двойном слое, совершенно недостаточны. Действительно, из приведенных примеров в случае золей сернистого мышьяка, золота, трехокиси вольфрама, пятиокиси ванадия и двуокиси титана, а также, вероятно, мастики процесс ионного обмена осложнен образованием малорастворимых солей в интермицеллярной жидкости. В случае адсорбции красителей коллоидной кремнекислотой мы, вероятно, имели дело с адсорбцией не ионов, а молеку.ч. Наконец, в случае окиси железа ничего определенного сказать нельзя, так как количества адсорбированных и вытесненных анионов не сравнивались при достаточно высоких концентрациях прибавленного электролита. Однако, как было указано, в случае коагуляции электролитами положительных коллоидов мы имеем косвенные указания на то, что процесс обменной адсорбции должен толковаться с более широкой точки зрения, не требующей соблюдения эквивалентности замещающихся компенсирующих ионов. Непосредственные указания на несоблюдение эквивалентности получены в нашей лаборатории при коагуляции щелочных золей кремнекислоты солями бария. Значительная адсорбция ионов Ва (— 10 N) сопровождается вытеснением очень малых количеств Н -ионов (— 10 Л ), причем концентрация Ка-ионов остается практически неизменной. [c.105]


Смотреть страницы где упоминается термин Ток обмена и адсорбция анионов: [c.119]    [c.85]    [c.305]    [c.149]    [c.149]    [c.121]    [c.89]   
Электрохимия металлов и адсорбция (1966) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция обменная

Ток обмена адсорбция



© 2025 chem21.info Реклама на сайте