Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообмен применение

    Для очистки газов от анионов кислот нашли применение ионообменные фильтры из волокна ВИОН АП-1. Емкость волокна для НР 10%, скорость газа в фильтре 0,05 м/с. При начальной концентрации 100—250 мг Р/м достигнута степень очистки 95 %. Регенерация фильтров осуществляется водой в количестве 1 м на 3 кг уловленного соединения. [c.488]


    Химической модификацией нефтяных асфальтенов — введением в пх молекулы новых функциональных групп с помощью реакций сульфирования, аминирования, фосфорилирования и др.— могут быть получены ионообменные материалы с разнообразными свойствами. Хлорметилированные асфальтиты могут служить агентами для бессерной вулканизации каучуков и в качестве от-вердителей некоторых поликонденсационных смол. Обстоятельный обзор процессов химической модификации ВМС нефти, характеристик получаемых продуктов и направлений их практического применения дан в работе [1073]. [c.204]

    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]

Рис. 185. Электродиализатор с применением ионообменных Рис. 185. Электродиализатор с применением ионообменных
    Ионообменники могут быть неорганического и органического происхождения, природными и синтетическими веществами. В настоящее время широкое применение получили синтетические органические ионообменники на основе искусственных смол эти сорбенты нерастворимы в воде и органических растворителях, обладают высокой ионообменной емкостью, селек- [c.223]

    Большое применение имеют цеолиты. Их используют в качестве селективных адсорбентов при глубокой осушке и очистке газов (в том числе природного газа) и различных органических жидкостей, для разделения газовых смесей (углеводороды и др.). Эффективность использования цеолитов обусловлена избирательностью их действия и легкостью регенерации (нагреванием). Цеолиты применяют и в качестве ионообменных веществ, в частности, в водоочистке. [c.378]


    Описано применение тонкодисперсных адсорбентов и ионообменных смол в качестве вспомогательных веществ, которые наряду с задерживанием твердых частиц суспензии извлекают вещества, растворенные в ее жидкой фазе [362]. Такой вид фильтрования назван активным и использован для очистки конденсата на электростанциях при помощи патронных фильтров. [c.345]

    Таким образом, размывание полосы уменьшается при ускорении процесса сорбции-десорбции в неподвижной фазе. В распределительной хроматографии это достигается использованием тонких пленок неподвижной фазы, а в адсорбционной и ионообменной — применением сорбентов с частицами малого размера. Высокая диффузионная подвижность ускоряет процесс десорбции и также [c.15]

    Катализ на ионообменных смолах. Ионообменные смолы (иониты), которые катализируют разнообразные химические превращения, протекающие но механизму кислотно-основного катализа, начинают применять в промышленности. Применение ионитов в качестве катализаторов освещено в [61, 621. Ниже кратко излагаются основные сведения об этой несколько специфической области гетерогенного катализа. [c.38]

    Применение ионитов в анализе затрудняется тогда, когда в растворе присутствуют большие количества различных посторонних ионов. Кроме того, осложнения возникают и в связи с присутствием Н+-ИОНОВ. Всего успешнее ионообменная хроматография применяется для анализа разбавленных растворов при отсутствии значительного количества посторонних ионов .  [c.133]

    Ионообменные сополимеры можно рассматривать как сильные монофункциональные кислоты в твердой нерастворимой форме. Они имеют различные области применения [88]. [c.539]

    В анализе нефтяных ГАС получили распространение сорбционные и хроматографические процессы, основанные на использовании адсорбционного, абсорбционного (разделение на инертном носителе, смоченном не испаряющейся в условиях анализа жидкостью), ионообменного, эксклюзионного (молекулярно-ситового, гель-фильтрационного) и координационного принципов разделения, в колоночном или плоскостном (тонкослойная или бумажная хроматография) техническом оформлениях, с применением жидкой или газообразной подвижной фазы, [c.15]

    Синтез фосфорсодержащих ионитов является сравнительно поздним направлением в производстве ионообменных смол. Благодаря интенсивному и успешному развитию синтеза и применения р-содержащих экстрагентов, обладающих огромными практическими возможностями, интерес к ним значительно возрос. Преимуществом Р-содержащих ионитов является их высокая радиационная устойчивость, что позволяет использовать их в средах с высокой радиоактивностью [12, 18—20]. [c.336]

    Практика работы заводов показывает, что создать полностью замкнутые циклы пе всегда удается. Для возможного сброса дебалансового количества стоков разработаны и рекомендуются для промышленного применения два способа до-оч истки стоков до санитарных норм ионообменный и карбонатный [106]. Проведенные исследования показали возможность доочистки сточных вод на анионите АВ-17 после основной известковой очистки на стадии нейтрализации. [c.251]

    Физико-химические методы очистки, как и химические, наиболее широкое применение нашли в процессах производства нефтяных масел и их регенерации. Удаление загрязнений из масел при использовании этих методов происходит за счет коагуляции и последующего осаждения, адсорбции или растворения загрязнений. Разновидностью адсорбционной очистки является ионообменная очистка. [c.118]

    Азотсодержащие соединения находят широкое применение в производстве синтетических волокон, пластмасс, искусственной кожи, каучуков, поверхностноактивных и моющих веществ, ионообменных смол, фармацевтических препаратов, присадок к топливам и маслам, ингибиторов коррозии, биологически активных веществ, флотореагентов, растворителей, текстильно-вспомогательных веществ, бактерицидов, гербицидов, фунгицидов, ускорителей вулканизации резины, красителей, абсорбентов кислых газов, взрывчатых веществ, ракетных топлив и для многих других целей. [c.278]

    Рассмотрим возможности применения метода топологического описания ФХС на примере процессов синтеза ионообменных смол. [c.295]

    В книге кратко изложена теория ионообменных реакторов. Особое внимание уделено физическим и математическим моделям, обобщенным методам моделирования и инженерного расчета, выбору начальных и граничных условий. Даны сравнительные оценки ионообменных реакторов и рекомендации по их применению в различных химико-технологических производствах. Приведены многочисленные примеры расчетов, в том числе с использованием ЭВМ. [c.167]

    Для обезвреживания сточных вод от нефтяных продуктов, сернистых и цианистых соединений, фенолов, поверхностно-активных веществ, кремнийорганических соединений, пестицидов, красителей, соединений мышьяка, канцерогенных ароматических углеводородов и других соединений применяется озон. При действии озона на органические соединения происходят реакции окисления и озонолиза. Озон одновременно обесцвечивает воду и является дезодорантом, применение его не вызывает значительного увеличения солевой массы в воде. Озон подают в сточную воду в виде озоновоздушной или озонокислородной смеси с концентрацией озона в них до 3%. Для лучшего использования озона газовая смесь подается через диспергирующие устройства под слой обезвреживаемой воды. Учитывая высокую токсичность озона и малую поглощаемость его стоками, газы после прохождения через воду надо подвергать очистке от озона. Ввиду высокой стоимости озона го применение целесообразно в сочетании с другими методами — биохимическим, ионообменным, сорбционным. [c.494]


    ПРИМЕНЕНИЕ ИОНООБМЕННЫХ СМОЛ (ПРОЦЕСС МЕТ-Х) [c.225]

    Основные направления аналитического и технологического использования ионообменной хроматографии следующие 1) разделение близких по свойствам элементов с применением комплексообразующих реагентов (например, редкоземельных и трансурановых элементов) 2) удаление мешающих ионов 3)концентрирование ценных микроэлементов из природных и промышленных вод 4) количественное определение суммарного содержания солей в растворах 5) деминерализация воды 6) получение кислот, оснований, солей извлечение редких и рассеянных элементов (урана, золота, серебра, германия и др.). [c.225]

    Для инициирования реакции окисления метана применяются также гомологи метана [84, 85], озон [86], атомарный водород [87], нитрометан [88], хлористый нитрозил и хлористый нитрил [89]. электроразряд [90], фотохимические средства воздействия [91] и т. д. Все перечисленные способы инициирования дороги и сложны, а эффективность средств воздействия незначительна (выход до 2% СНоО на пропущенный метан). Так, при использовании углеводородов наблюдается разветвленность процесса с образованием большого числа различных продуктов, что требует сложных и дорогостоящих процессов разделения полученной смеси. Окислы азота оказывают коррозионное воздействие на аппаратуру, а малейшие следы окислов в конечном продукте — СНаО — являются нежелательными примесями, от которых освобождаются тщательной и дорогостоящей очисткой с применением ионообменных смол. [c.166]

    В промышленности нашла широкое применение пока одна группа органических твердых катализаторов — ионообменные смолы ( иониты), катализирующие химические превращения, которые протекают по кислотно-основному механизму этерификация, алкилирование, дегидратация, гидратация, полимеризация и другие [233-235]. [c.174]

    На основании имеющихся опытных данных по составу и свойствам асфальтенов можно с достаточной уверенностью прогнозировать эффективное применение асфальтенов в производстве высокопористого адсорбционного материала (активированного угля) с однородными порами для использования в качестве новых типов адсорбентов типа молекулярных сит, как носителей для катализаторов гидрирования и дегидрирования, в качестве адсорбентов в процессах очистки от загрязнений воды и атмосферного воздуха. Об одном из приемов приготовления активных адсорбентов из асфальтенов упоминалось выше. Приготовление активных ионообменных материалов, матрицей в которых служат смолисто-асфальтеновые вещества нефти,— весьма перспективное направление исследований [23, 24]. [c.262]

    Для получения стерильного продукта только в особых случаях необходимо вести полностью асептические ионообменные процессы. Если ионообмен применен в последней операции процесса, необходимость асептики очевидна. Таким случаем является собирание крови человека с антикоагуляцией и на ионитах, если обработанная кровь применяется для терапии переливания 149] для безопасности больного, которому вливают очищенную от кальция ировь или плазму, следует выдерживать жесткие химические, физические и биологические требования. [c.628]

    Получение ионообменных форм иеопитов типа фожазит и морденит. Нели используется цеолит типа фожазит в натриевой форме с мольным отношением 510з АКО-, >4.6, степень ионного обмена натрия на кальций должна быть >95 . В случае применения цеолита типа морденит натриевая форма переводится в аммонийную. [c.64]

    Однако, несмотря на указанные достоинства, иониты в основном используются в лабораторных условиях > (реакции этерификации, гидролиза, гидратации, дегидратации, алкилирования, полимеризации, конденсации и др.). В промышленности же широкие возможности методов ионообменного катализа не нашли пока достаточного применения. Из промышленных процессов с ионитами, осуществленных или внедряемых в СССР, отметим алкилирование фе-нoлoв " , гидратацию изобутилена и дегидратацию триметилкарби-нола П -1 , синтез дифенилолпропана очистку фенолов . [c.146]

    Однако Симхен и Коблер [67] считают, что при синтезе чувствительных к гидролизу соединений лучше использовать предварительно полученный и выделенный цианид четвертичного аммония в апротонных растворителях, таких, как ДМСО, ацетонитрил или метиленхлорид [67]. Описано также применение анионообменных смол в N-форме [1507]. В обычном МФК-процессе вместо краун-эфира можно использовать более дешевый катализатор — эфир полиэтиленгликоля 8, хотя он и несколько менее активен [47, 61]. В более поздних работах рекомендуют применять трехфазный катализ [62, 64, 68, 775, 860]. Как уже указывалось в разд. 3.1.4, эта техника в принципе очень привлекательна. Так, выдан патент на получение адипопитрила из 1,4-дихлорбутана с использованием в качестве катализатора ионообменной смолы амберлит IRA-400 [69]. Однако недавно было показано, что каталитическая активность трехфазного катализатора на основе полистирола с поперечными связями зависит от числа имеющихся групп R4N+. Высокая степень замещения в кольцах, как это характерно для продажных ионообменных смол, снижает возможность их использования в МФК-реакциях [64]. [c.120]

    Как показали исследования, существующая воднонюислотная абсорбция не обеспечивает требуемого по санитарным нормам содержания фтора в газах из-за значительного давления насыщенных паров НР и 51р4 над водными растворами Н251Рб, а также наличия в газовой фазе тонкодисперсных фтористых соединений, не улавливаемых водой [94]. Для улавливания остаточных количеств фтора разработаны и внедрены в промышленность щелочная абсорбция, сорбция с применением ионообменных фильтров, активного угля и силикагеля, конденсация парогазовой смеси в сочетании с другими методами и др. [c.231]

    В последние годы ассортимент реагентов для ионного обмена—их называют теперь ионитами — значительно расширился. Некоторые из ионитов (сульфированные угли и соответствующие ионообменные смолы), называемые катионитами, обладают способностью обменивать содержащиеся в растворе катионы на ионы водорода. Другие (например, продукты конденсации фенилендиаминп с формальдегидом), называемые анионитами, обменивают различные анионы на ионы гидроксила. Последовательное применение ионитов этих двух видов позволяет достигать практически полной деминерализации воды без дистилляции (сами иониты легко регенерируются катиониты — промывгой раствором кислоты, аниониты — растворами щелочи или соды). Иониты применяются также в хроматографическом анализе для разделения близких между собой ионов. [c.373]

    Были предложены различные изменения метода с целью устранения или смягчения влияния этих факторов, а также электродиализаторы с увеличенным числом камер (пятикамерные) и многокамерные, дающие возможность не только быстро очищать золь, но также и концентрировать извлекаемые примеси. Описано успешное применение ионообменных смол для очистки промывной воды, выходящей из электродиализатора (рис. 185) это дало возможность многократно применять одну и ту же воду. Явления электродиализа и электроосмоса связаны с поверхностными свойствами соответствующих л ембран и диафрагм. [c.535]

    Рециркуляция также нащла широкое применение в процессах выпаривания, адсорбции, сушки, экстракции, кристаллизации, в ионообменных процессах (например, при получении калиевой селитры на катионите КУ-1, что позволяет получать высококонцентрированные растворы нитратов. Широко распространена рециркуляция в аппаратах с псевдоожиженным слоем. Рециркуляция является эффективным средством теплосъема и поэтому позволяет осуществлять в промышленности реакции, протекающие с большим выделением тепла. В случае применения рецикла по жидкой фазе в трехфазных реакторах с суспендированным катализатором, кроме теплосъема, рециклический поток улучшает условия распределения катализатора в реакционном объеме. [c.290]

    V При производстве этил-, пропил- или додецилбензолов редакционную массу алкилирования бензола олефинами в присутствии хлорида алюминия очищают от катализатора водно-щелочной обработкой при температуре 10—20°С. Многократная промывка дает значительный объем сточных вод. Так, при производстве 1 т алкилбензола получается 10—12 сточных вод.- Чтобы уменьшить количество последних и полностью извлечь катализатор из реакционной массы процесса, предложено использовать ионообменные смолы/ КУ-2 в Н+ и натриевой формах, анионит АВ-Г6-ТС в ОН- форме [248], анионообменные смолы АВ-17, катионообменные ткани в Н+форме, анионо-обменные ткани в ОН-, РО= б-формах [249]. [ Эти материалы являются эффективными ионообменными сорбентами при очистке алкилатов от хлоридов алюминия. При времени контакта 10—12 мин, температуре 60—70°С коэффициент. извлечения хлорида алюминия практически составляет 100% (в статичес ких условиях). Экспериментальные данные, полученные в динамических условиях, показали, что максимальная объемная скорость подачи алкилата не должна превышать, 9—10 м /м ионита, так как возможен механический унос последнего. Применение ионообменных тканей и нетканых материалов позволяют в 2—3 раза повысить объемные скорости потока при 100%-ном извлечении. [c.261]

    Полученные из линта гексозные гидролизаты содержат 13— 15% РВ, имеют доброкачественность 70—72%. Для получения из гидролнаата сорбита они подвергаются осветлению активным углем (5% к сухим веществам), затем ионообменной очистке, которая осуществляется в четырехзвенной батарее по схеме АН-1—> —>-ЭДЭ-10п—>-КУ-1— -ЭДЭ-Юп (при соотношении объемов набухших смол 1,0 1,0 1,27 1,27 [28]). В результате ионообменной очистки доброкачественность гексозного гидролизата повышается до 91,8%. Очищенный гидролизат подщелачивают раствором едкого натра до pH 7,4—7,6 и гидрируют с применением стационарного никель-алюминиевого катализатора, промотированного титаном, под давлением 10 МПа при температуре в подогревателе 90°С, внизу реактора 110°С, в середине и на выходе из реактора 125—130 °С. Полученный после гидрирования раствор сорбита с концентрацией сухих веществ около 10% подвергают ионообмен- [c.171]

    Более подробные сведения по ионнтовым мембранам можио найти в следующих источниках 1. Деминерализация методом электродиализа. Ионитовые мембраны, перев. с англ. под ред. Б. Н. Ласкорина н Ф. В. Раузе н, Госатомиздат, 1963. — 2. Б. И. Л а-с к о р и и, Н. М. Смирнова, М. Н. Г а н т м а и. Ионообменные мембраны и их применение, Госатомиздат, 1961.—3. Б. Н. Л а с к о р н н, И. М. Смирнова, ЖПХ, XXXIV, вып. 8 (1961), [c.167]

    В настоящее время появились наиболее полные методы, сочетающие разделение мальтенов с учетом их химической природы и размеров комбинации ионообменной хроматографии с гель-фильтрованием. По-видимому, очередность применения хроматографии и гель-фильтрования не имеет значения. Например, из остаточных нефтяных фракций ионообменной хроматографией выделены кислые и основные фракции [249] и найдено, что в природных асфальтах, промышленных остаточных фракциях и окисленном битуме содержание основных компонентов выше, чем кислых. Основные фракции имеют азот- и серусодержащнх компонентов в 2—3 раза больше, чем кислородсодержащих. Содержание углерода в кислых фракциях более, а в остальных менее 80 %. В содержании водорода не наблюдается закономерностей. [c.104]

    Декатионированные, а также различные ионообменные формы цеолитов типа Y с поливалентньл<и металлами характеризуются более высокой, чем алюмосиликатные катализаторы крекинга, активностью в реакциях изомеризации ксилолов /21/. Экспериментальные данные показывают, что превращения ксилолов при применении цеолитов типа Y с поливалент-HboiH катионами включают стадию тро с-алкилирования, в которой триметилбензолы образуются как промежуточные соединения /22/. [c.39]

    В качестве первых катализаторов крекинга применялись монтмориллонитовые глины, обработанные кислотой. Эти глины представляют собой гидратированные алюмосиликаты, обладающие ионообменными свойствами. В процессе кислотной обработки из алюмосиликата удаляются гидратированные катионы и приблизительно половина атомов алюминия /20/, Катализаторы этого типа получили широкое распространение, но обладают двумя существенными недостатками. Во-первых, некоторая часть железа, входящая в кристаллическую решетку алюмосиликата, становится каталитически активной при крекинге нефтепродуктов с большим содержанием серы. Это железо окисляется при регенерации и в ходе крекинга катализирует коксообразование и образование водорода. Кроме того, монтмориллонитовые глины чувствительны к высоким температурам регенерации. Впоследствии были найдены пути преодоления этих недостатков. Прежде всего нашли применение в качестве катализаторов другие алюмосиликаты, в частности гал-луазит и каолинит. К тому же сама кислотная обработка глин стала проводиться таким образом, чтобы удалить более половины алюминия и одновременно часть железа, после чего некоторое количество алюминия вводилось путем рекатионирова-ния. Таким образом, приготавливались катализаторы, которые можно назвать полусинтетическими. Катализаторы такого типа получают и другими препаративными методами. [c.50]

    Мембраны готовят из различных материалов полимерных пленок, пористого стекла, керамики, металлической фольги, ионообменных материалов. Наиболылее применение получили мембраны на основе различных полимеров ацетата целлюлозы, поливинилхлорида, полистирола, полиамидов и др. Первые искусственные мембраны были получены в начале шестидесятых годов из ацетата целлюлозы. Жизнедеятельность организма человека и других живых существ поддерживается благодаря поступлению питательны  [c.238]


Библиография для Ионообмен применение: [c.371]    [c.175]    [c.152]    [c.359]   
Смотреть страницы где упоминается термин Ионообмен применение: [c.195]    [c.189]    [c.219]    [c.15]    [c.27]    [c.285]   
Ионообменная технология (1959) -- [ c.12 , c.53 ]

Ионообменная технология (1959) -- [ c.12 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий применение в ионообменных

Белявская, Г. Д. Брыкина, Т. А. Большова, Иванова. Основные направления применения ионообменных сорбентов в аналитической химии

Бензальдегиды конденсация с применением ионообменного катализ

Бибикова, В. В. Ильченко, 3. А. Семенова. Применение ионообменного метода для извлечения рения из молибденитов

Бутилацетат. Применение ионообменных смол в качестве катализатора

Другие применения ионообменных методов при анализе фосфатов

Ионообменная очистка области применения

Ионообменная хроматография с применением разбавленной соляной кислоты в качестве подвижной фазы

Ионообменное отделение лития применение органических растворителей

Ионообменные мембраны применение

Ионообменные применение в катализе

Ионообменные смолы применение

Ионообменные смолы применение для удаления ионов из белковых растворов

Ионообменные смолы, применение для пептидов

Ионообменные смолы, применение для разделения аминокислот

Ионообменный синтез применение

Методика 61. Анализ силикатов с применением ионообменной хроматографии

Новаковский, Л. М. Смирнова. Применение ионообменных диафрагм для очистки сточных вод заводов хромовых соединений

Области применения ионообменной хроматографии

Области применения ионообменных смол

Обратимость процесса ионообмена и практическое применение уравнения изотермы

Общие сведения о применении ионообменных смол

Ольшанова, А. В. Дивак, Н. М. Морозова, С. М. Баркан. Применение ионообменных процессов в производстве молочных консервов

Определение гафния с применением ионообменной хроматографии

Особенности применения ионообменных материалов на АЭС

ПРИМЕНЕНИЕ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ В АНАЛИЗЕ МЕТАЛЛОВ Определение бериллия

ПРИМЕНЕНИЕ МЕТОДА ТОПОЛОГИЧЕСКОГО ОПИСАНИЯ ФИЗИКО-ХИМИЧЕСКИХ СИСТЕМ Набухание пространственно-сшитых сополимеров в растворителях при синтезе ионообменных смол

Применение длинноволновой ИК-спектроскопии для исследования разных ионообменных форм цеолитов

Применение ионитов в пищевой промышленности Покровский. Токсико-гигиеническая оценка ионообменных смол, применяемых при изготовлении некоторых пищевых продуктов и для улучшения качества питьевой воды

Применение ионитов для ионообменного упрочнения

Применение ионного обмена и ионообменной хроматографии

Применение ионного обмена к изучению состояния радиоэлементов в растворе Законы ионообменного, равновесия

Применение ионообменной хроматографии

Применение ионообменной хроматографии в агропочвоведении

Применение ионообменной хроматографии в аналитической химии

Применение ионообменной хроматографии в биологии

Применение ионообменных диафрагм

Применение ионообменных мембран для удаления радиоактивности

Применение ионообменных смол (процесс Мет-х)

Применение ионообменных смол в аналитической химии

Применение ионообменных смол в химических источниках тока

Применение ионообменных смол для регенерации трансформаторных масел

Применение метода ионообменного разделения смесей ионов в статических и динамических условиях

Применение пленок из ионообменных смол

Применение сорбенты, их выбор и стандартизация Адсорбенты в ионообменной хроматографии

Применение фторсодержащих ионообменных мембран в качестве твердого поли электролит

Р у т б е р г. Применение ионообменных сорбентов для предотвращения свертывания крови

Различные области применения ионообменных мембран

Рекомендации по практическому применению метода элютивной ионообменной хроматографии для разделения смесей, вытекающие из теории тарелок

Свойства и применение ионообменных целлюлоз и сефадексов

Состав, свойства, области применения и зарубежные аналоги). Анионные, катионные, амфолитные, кремнийорганические ПАВ. Дистрибьюторы ПАВ (перечень продукции, адреса, номера телефонов) Ионообменные материалы

Теория и применение ионообменной хроматографии Бреслер и А. И. Егоров. Теория и практика непрерывной хроматографии

Терапевтические применения ионообменных смол

Термодинамика, применение ее законов к ионообмену

Толмачев, В.А. Федоров, И.В. Баранова. Применение синтетических цеолитов для ионообменного разделения смесей ионов

Электродиалиэ применение ионообменных



© 2025 chem21.info Реклама на сайте