Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация макромолекул и прочность

    Спряденное волокно имеет очень низкую прочность (10—12 ркм) и большое пластическое удлинение (300—500%). так как макро-молек лы высокополимера в процессе прядения из расплава почти совсем не ориентируются вдоль оси волокна. Для придания волокну требуемых физико-механических свойств его подвергают холодной вытяжке. Волокно вытягивается до трех-пятикратного увеличения длины. При этом достигается высокая степень ориентации макромолекул—прочность волокна возрастает в 4—7 раз. Остаточное удлинение уменьшается до 12 — 25%, и волокно перестает быть пластичным. [c.447]


    При литье под давлением качество отливок зависит от различных факторов температуры, скорости литья, давления, условий охлаждения отливки в пресс-форме, степени ориентации макромолекул, прочности сварки на встречных потоках расплава при заполнении пресс-формы, степени переплавки сырья и др. Кроме того, большое значение имеет соблюдение требований, предъявляемых к литьевому оборудованию равномерное распределение тепла внутри плавильного цилиндра машины, инертность среды, в которой находится расплав, минимальное время пребывания полимера в состоянии расплава и минимальная скорость впрыска, оптимальная конструкция сопла и т. д. Современные машины для литья под давлением в достаточной мере удовлетворяют этим требованиям, поэтому экспериментальные исследования влияния многократной переработки лучше проводить на отливках, получаемых именно этим способом. В большинстве случаев литье производится в многоместные пресс-формы с центральным расположением литникового канала относительно всех гнезд пресс-формы. [c.15]

Рис. 8.4. Прочность сухого и мокрого вискозных волокон в зависимости от угла раз-ориентации макромолекул прочность изотропного волокна составляет 10 гс/гекс Рис. 8.4. <a href="/info/500723">Прочность сухого</a> и <a href="/info/308822">мокрого вискозных</a> волокон в зависимости от угла раз-ориентации макромолекул прочность <a href="/info/1289602">изотропного волокна</a> составляет 10 гс/гекс
    Поли-и-ксилилен, полученный высокотемпературным пиролизом, представляет собой бесцветную, иногда слегка желтоватую, прозрачную или просвечивающую пленку плотностью 1,1 г/см . Полимер дает четкую рентгенограмму кристаллического вещества. При вытягивании на холоду удлинение однородного прозрачного поли-п-ксилилена достигает 600%, При этом вследствие ориентации макромолекул прочность образцов при растяжении заметно возрастает. Полимер плавится примерно при 427° С. При нагревании до температуры, близкой к температуре плавления, поли-п-ксилилен не переходит в вязкотекучее состояние, однако приобретает некоторую пластичность. [c.429]

    Для достижения разрывного напряжения ст = P/F необходимо компенсировать увеличение F повышением усилия Р, что и приводит к упрочнению резины. При наполнениях, достаточных для перевода большей части каучука в пленочное состояние, поверхность разрыва образуется по пленочному каучуку с наполнителем, где вследствие ориентации макромолекул прочность материала больше. Такая ориентация может быть достигнута также в результате растяжения каучука наполнителем. Поэтому даже неактивные наполнители дают известное упрочнение резины. [c.361]


    Механические свойства полимеров зависят не только от их химической природы, степени сшивки пространственной сетки, но и от ориентации макромолекул и надмолекулярных структур, пластификации, степени наполнения и др. Ориентирование цепей макромолекул и надмолекулярных структур приводит к анизотропии свойств полимера. Обнаруживается резкое увеличение его прочности Б направлении ориентации. Этот факт широко используется в процессах прядения волокон и получения пластических масс. Ориентирование макромолекул способствует кристаллизации и увеличению хрупкой прочности полимера. [c.391]

    Твердые аморфные полимеры обладают большим резервом прочности, однако это не означает, что любой полимер можно использовать для получения высокопрочного технического волокна. В значительной степени эта возможность ограничивается трудностями получения соответствующей ориентации макромолекул и в еще большей мере — принципиальной (по термодинамическим причинам) неустойчивостью этой ориентации, приводящей к так [c.196]

    Таким образом, теоретическая прочность определяется энергией ра. ф1 шаемых связен и степенью ориентации макромолекул. [c.318]

    Переработка полиамидов в изделия методами литья под давлением и экструзии приводит к некоторой ориентации макромолекул полимера. Фактически, любой процесс, включающий течение или сдвиговую деформацию, вызывает ориентацию различных структурных образований полимера, и этот эффект имеет место как в расплаве, так и в условиях пластической деформации твердого материала. Обычно ориентация полимера происходит в большинстве процессов формования изделий, но иногда необходимо увеличивать степень ориентации полимеров, используя специальные методы, с целью увеличения прочности в направлении ориентации. Таким образом регулируется прочность полиамидных пленок, получаемых экструзией. Пленки можно ориентировать в двух направлениях, перпендикулярных друг другу, что также вызывает возрастание их прочности. [c.119]

    Повышения температуры плавления гибкоцепного полимера можно достигнуть не только варьированием скорости и температуры кристаллизации, но и его растяжением. Такое явление особенно характерно для аморфных кристаллизующихся эластомеров и известно как ориентированное состояние полимеров. Поэтому различают понятия кристаллический и кристаллизующийся полимер. Это различие связано с релаксационными явлениями в полимерах. Кристаллическим называют полимер, в котором кристаллическая структура (независимо от ее количества) создана в процессе синтеза полимера, т. е. сформирована одновременно с формированием самих макромолекул. Кристаллизующимся называют полимер, который при синтезе получается аморфным, а кристаллические структуры возникают в нем в процессе деформации (обычно растяжения) при ориентации макромолекул в направлении деформации. Общим свойством кристаллических и кристаллизующихся полимеров является невозможность разделения образца на кристаллическую и аморфную фазы, так как в процессе формирования кристаллической структуры одна и та же макромолекула может входить и в кристаллическую, и в" аморфную области. Прочность и относительное удлинение ориентированных полимеров выше, чем у кристаллических полимеров из-за направленного расположения макромолекул. [c.29]

    Прочностные характеристики полимеров также зависят от времени действия нагрузки, предварительной ориентации макромолекул, химического строения (прочность валентных и межмолекулярных сил) и связанной с ним плотности (увеличение ее часто сопровождается возрастанием разрывной прочности), присутствия поверхностно-активной среды и т. д. [c.424]

    Таким образом, увеличение механической прочности полимерной композиции при введении в него наполнителя обусловлено силами адгезии и упрочнением самого полимера вследствие уменьшения его толщины и ориентации макромолекул. Так как силы адгезии могут достигать величины порядка 3000 кг/см2, что превосходит техническую прочность каждого из компонентов композиции, большое значение имеют структура наполнителя (анизотропность, волокнистость, слоистое строение) и другие факторы, определяющие его механическое поведение. Поэтому у резин, содержащих легко расщепляемые на чешуйки графит или тальк, усиливающий эффект наполнителя очень мал несмотря на высокую адгезию полимера к нему. Напротив, усиливающий эффект очень велик у таких наполнителей, как ткань, хлопковые очесы, древесный шпон, бумага и другие слоистые и волокнистые материалы. [c.472]

    Усиливающий эффект тем больше, чем меньше прочность самого полимера. Кристаллизующиеся при деформации каучуки (например, натуральный), в которых ориентация макромолекул в зна- [c.474]


    Сформованное полиамидное волокно имеет очень низкую прочность (10—12 ркм) и большое пластическое удлинение (300— 500%), так как в процессе формования из расплава макромолекулы полимера почти совсем не ориентируются вдоль оси волокна. Для придания волокну требуемых физико-механических свойств его после предварительного кручения подвергают холодной вытяжке (при комнатной температуре) до 3—5-кратного увеличения длины, при этом происходит значительное повышение степени ориентации макромолекул, а прочность волокна возрастает в 4—7 раз, остаточное удлинение уменьшается до 12—25%, и волокно перестает быть пластичным. [c.472]

    Напомним предварительно, что процесс формования волокна заключается в преобразовании раствора в жидкую нить, в фиксации этой нити путем перевода в нетекучее состояние и в вытягивании зафиксированной нити для максимально возможной ориентации макромолекул с целью повышения прочности волокна. [c.170]

    В результате в волок 1ах, прошедших стадию ориентационной вытяжки, создается не только ориентация макромолекул, что приводит к повышению прочности волокон на разрыв, но и скрытый распад волокна на макрофибриллы, что обусловливает повышение усталостных свойств, выявляемых при циклических сдвиговых деформациях волокна. На рис. 8а и б приведены примеры распада ориентированного волокна на фибриллярные образования и неориентированного волокна — на бесформенные фрагменты при воздействии набухающей среды. [c.174]

    Свойства высокомолекулярных соединений зависят от молекулярного веса, химического состава и строения, формы макромолекул, ориентации и релаксации (релаксация — снятие напряжений в материале при нагревании), а также упорядоченности структуры макромолекулы. С увеличением молекулярного веса до известного предела улучшаются физико-механические свойства полимеров. Химический состав и строение оказывают большое влияние на тепло-, морозостойкость и химическую стойкость полимеров. Полимеры, имеющие менее разветвленное (асимметричное) строение макромолекулы, отличаются большей вязкостью, меньшей растворимостью и большей прочностью. От правильной ориентации макромолекул во многом зависит качество искусственного и синтетического волокон. [c.294]

    Ме аническая прочность полимеров аморфной структуры п одном направлении может быть значительно увеличена ориентацией макромолекул. Для этого полимер нагревают выше температуры стеклования и медленно растягивают. Под влиянием растягивающего усилия способность отдельных макромолекул принимать различ1 ые формы (конформационный состав) уме ь-шается, и, постепенно выпрямляясь, они располагаются вдоль оси ориентации и сближаются друг с другом, создавая более уплотненную структуру. ДJ я 1он Л непия рочности В двух взаимно-перпендикулярнр х направлениях полимер растягивают по двум 1 аправлепиям. [c.48]

    Вытягиванием полимера в 5—6 раз от его первоначальной длины можно вызвать ориентацию макромолекул и этим еще более улучшить его прочностные характеристики. Способность поливинилового спирта к ориентации макромолекул используют в процессах изготовления пленок и особенно нитей, увеличивая этим приемом их прочность в направлении растягивания в 8—9 раз (предел прочности при растяжении ориентированной непластифи-цированной пленки из поливинилового спирта составляет 4000— 4500 кгкм ). [c.284]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Высокоэластическая деформация, вынужденно-эластическая деформация стеклообразных полимеров, пластическая деформация кристаллических полимеров приводят к развертыванию молекулярных клубков и ориентации макромолекул в нанравлении действия силы. Ориентированные эластомеры можно охладить до Т<Тс и таким образом зафиксировать состояние ориентации макромолекул. Все ориентированные полимеры имеют одно общее свойство их прочность и модуль упругости при растяжении в направлении ориентации много больше, чем у неориентированного полимера, а гфочность и модуль при деформации в перпендикулярном направлении ме]Н)Ше, чем у исходного пеорисптиронанпого полимера. [c.191]

    Прочность синтетических волокон в отличие от природных значительно (в несколько раз) повышается при холодной вытяжке этих волокон после образования их прядением из расплава. Холодная вытяжка способствует дополнительной ориентации макромолекул в направлении вытяжки и увеличению степени кристалличности полимера. При этом длина волокна увеличивается на 400—600%. Ориентированное волокно или пленка имеют прочность на разрыв 3000—4000 кг1см , а неориентированное 500— 700 кг/см [10]. [c.670]

    Деформирование П.м. в эластическом состоянии и при течении расплава сопровождается ориентацией макромолекул и надмолекулярных образований, а после прекращения деформирования П.м. и течения расплава идет обратш,ш процесс-дезориентация. Степень сохранения ориентации в материале изделия зависит от скоростей протекания обоих процессов. В направлении ориентации нек-рые физ.-мех. характеристики материала (прочность, теплопроводность) возрастают при этом структура материала оказывается неравновесной и напряженной, что приводит к снижению формоустойчивости изделия, особенно при повыш. т-ре. Длит, воздействие повыш. т-ры, а в случае реактопластов и значит, выделение теплоты, сопровождающее отверждение, может приводить к термоокислит. деструкции материала, а большие скорости течения материала-к его механодеструкции. Отверждение ряда реактопластов по р-ции поликонденсацин сопровождается выделением низкомол. продуктов, вызывающих образование вздутий и трещин в изготовляемых деталях. [c.6]

    О влиянии релаксационных явлений на прочность кристаллизующихся эластомеров свидетельствует немонотонная зависимость прочности от скоростн растяжения (рис. 5.43). На участке А происходит криста 1лизация полимера (образование фибриллярной структуры), при этом повышается степень ориентации молекул и в кристаллической части, и в аморфной. Трещины илн надрывы зарождаются в аморфной области и.ли иа границе кристалл — аморфная часть, и прочность определяется прочностью аморфных участков Поскольку при кристаллизации повышается степень их ориентации, а следовательно, и прочность, то можно считать, что кристаллизация приводит к упрочнению. В процессе деформирования на участке В макромолекулы не успевают принять необходимую для кристаллизации конформацию и кристаллизация замедляется, а на участке полимер не кристаллизуется и прочность определяется степенью ориентации макромолекул. [c.335]

    Итак, разрушение полимеров под действием нагрузки происходит в результате проскальзывания макромолекул относите ть- НО друг друга и разрыва химических связей назовем это механическим фактором) и сопровождается необратимым изменением структуры вследствие интенсивного протекания механохимических реакций химический фактор) Прочность повышается с ростом степену ориентации макромолекул в направлении действия силы и снижается с увеличением дефектности материала. [c.343]

    Повышенно прочности (л в 10 раз) при переходе от сфере-литиой к фибриллярной структуре связано со значительной ориентацией макромолекул в фибриллярных кристаллах. Еще в большей мерс проявляется роль ориентации при разрушении стеклообразных полимеров ( (охрупкие стекла) в области температур Т цр<Т Тс, где прочностные свойства определяются способностью материала образокывать шейку . В этом случае [c.345]

    I очиость ориентированного полн-чера ири увеличении степени полимеризации не возрастает Расширение молекулярно-массового распределения за счет наличия ннзкомолекулярных фрак-дий всегда приводит к снижению прочности. Увеличение раз-ветвлеииости макромо текул повышает число дефектных мест точек ра ветвлеиня), снижает степень ориентации макромолекул, увеличивает время релаксации, т, е. уменьшает диссипацию напряжений. Все это также способствует снижению прочности [c.346]

    Свожесформованное вискозное волокно представляет собой гомогенный гель гидратцеллюлозы, содержащий до 80% воды. В ходе коагулирования нитей и регенерации целлюлозы полученные нити подвергают вытягиванию с целью образования фибриллярной структуры искусственного волокна и ориентации макромолекул и кристаллитов. Это придает волокнам необходимую прочность. Волокна промывают, отбеливают, подвергают отделке и т.д. [c.594]

    Температура расплава определяет его текуяесть, плотность, степень ориентации макромолекул полимера при течении расплава в форме. Текучесть должна быть достаточной для заполнения гнезд формы и точного воспроизведения их конфигурации. Кристаллические полимеры при нагревании переходят в аморфное состояние, что сопровождается снижением их плотности. Например, плотность кристаллической фазы полиэтилена 1000 кг/м , аморфной 840 кг/м . Следовательно, переход в аморфное состояние сопровождается увеличением объема материала. Происходит также и термическое расширение полимера. Увеличение объема полимера при плавлении может достигать 9—10%- Слишком высокая температура литья может привести к интенсивной термоокислительной деструкции полимера, а также к его частичному сшиванию, снижению прочности, эластичности, изменению цвета и другим нежелательным последствиям. [c.283]

    При модификации длинноцепными аминами гидрохлорированного СКИ-3 наблюдается увеличение прочности и эластичности материала, что объясняется облегчением ориентации макромолекул полимера при растяжении, подобно тому как это имеет место при наличии межструктурного пластификатора. Особенно значительное увеличение деформации наблюдается при модификации гидрохлорированного каучука кремнийорганическим амином (ди-этиламинометилентетраэтоксисиланом) марки АДЭ-3 (рис. 2.6). Введение аминов с относительно длинной цепью приводит к значительному уменьшению температуры стеклования, что не характерно для добавок ароматических аминов, например ц-фениленди-амина. [c.59]

    Для исследования релаксационных процессов, внутри- и межмолекулярных взаимодействий в полимерах большое значение имеют акустические методы, которые также могуг быть использованы для определения геплоемкости при температурах, близких к абсолютному нулю, прочности высокомолекулярных материалов, ориентации макромолекул, степени сшичания и т. Д. Наличие четкой зависимости химического строения, физической структуры, молекулярной подвижности и т. д. от 1аких параметров, как скорость и коэффициент поглощения звука, позволяет быстро и точно измерить Е" и tg ср в широком диапазоне частот и амплитуд без изменения структуры или разрушения изделия, что облегчает интерпретацию полученных результатов в случае акустических спектрометров эти измерения автоматизированы. Особо перспективно применение акустических методов в дефектоскопии полимеров и при неразрушающих испытаниях. См. [14]. [c.389]

    При ориентации макромолекул всегда усиливается различие свойств полимера по разным направлениям. Волокна, например, обладают значительно большей разрывной прочностью в продольном направлении, чем в поперечном, что проявляется в легкой рас-щепляемости их на отдельные волоконца. Объясняется это наличием в полимерах таких двух резко различных видов взаимодействия между атомами, как прочные химические связи, направленные вдоль цепи и разрушающиеся только при действии высоких [c.465]

    По-видимому, увеличение прочности в результате ориентации материала связано с одновременным действием трех факторов 1) переходом от разрыва межмолекулярных ван-дер-ваальсовых связей к разрыву химических связей в цепях 2) выравниванием и залечиванием неоднородностей в процессе предварительной вытяжки и 3) возникновением анизотропии упругих свойств, что может затруднить прорастание трещин поперек направления предварительной вытяжки, так как в направлении ориентации макромолекул материал имеет наибольший модуль [474, с. 215]. [c.178]

    При которых возможен наибольший эффект ориентации макромолекул при растяжении. С технической точки зрения, реверсия вулканизации или пере-вулканизация являются нежелательными процессами. Перевулканизован-ные резины менее прочны, имеют низкое сопротивление старению. В то же время в области слабой перевулканизации значения морозостойкости, устойчивости к набуханию, озоностойкость, эластичность выше, а гистере-зисные потери и теплообразование при многократных деформациях, остаточные деформации при растяжении и сжатии низки. Недовулканизован-ные образцы имеют более высокие значения сопротивления раздиру и сопротивления образованию и разрастанию трещин при многократном изгибе. В оптимуме вулканизации максимальными или лучшими являются прочность и модули при растяжении, сопротивление истиранию, устойчивость вулканизатов к старению. [c.95]


Смотреть страницы где упоминается термин Ориентация макромолекул и прочность: [c.352]    [c.198]    [c.202]    [c.192]    [c.207]    [c.788]    [c.14]    [c.317]    [c.344]    [c.347]    [c.347]    [c.348]    [c.134]    [c.115]    [c.423]    [c.372]   
Химические волокна (1961) -- [ c.52 , c.53 , c.64 , c.83 , c.84 , c.86 ]




ПОИСК







© 2025 chem21.info Реклама на сайте