Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация кристаллизация

    П1. Сложнее третий вариант структурного стеклования, который связан с непрерывным изменением конформаций цепей при растяжении, или ориентации (см. гл. V и VI). Растянутые цепи, если сохраняется растягивающая сила (за счет внешнего поля или внутреннего — при кристаллизации), обладают пониженным кон-формационным набором , т. е. пониженной конформационной энтропией, а активационные барьеры торможения внутреннего вращения возрастают. Естественно, эти цепи становятся и термодинамически, и кинетически как бы более жесткими, что равносильно смещению релаксационного спектра в целом в сторону более высоких температур и больших времен релаксации [19, с. 124]. [c.82]


    В ряде слз чаев задача сводится к учету степени автономности мезогенов и основной цепи и их взаимного влияния. Пионером в этой области был Шибаев [30], который показал даже не для жидких кристаллов, а для полимеров, кристаллизующихся боковыми группами, что, если основная цепь имеет а-спиральную конформацию, кристаллизация ветвей может разрушить ( расплавить ) ее, и наоборот. [c.361]

    В жидкости существует равновесная смесь нескольких конформаций, но при кристаллизации вещества все молекулы его переходят в одну, наиболее устойчивую конформацию. [c.221]

    Ламель - кристаллическая форма полимера, характеризующаяся складчатой конформацией (см.) макромолекул. Возникновение таких упорядоченных структур, сложенных наподобие ленты, обусловлено возникновением избыточной поверхностной энергии на поверхностях раздела фаз в процессе кристаллизации полимеров из растворов или расплавов. [c.400]

    Протяженные участки макромолекул, содержащие гибкие сегменты, имеют свернутые конформации (спираль, клубок), а группы, находящиеся в них, обладают малой энергией межмол. взаимодействия, напр. (кДж/моль) 2,8 (СН2), 4,2 (О) и 12,1 (СОО) т. стекл. соед., содержащих такие сегменты, от —40 до — 60°С. Более высокие энергии межмол. взаимодействия уретановых и карбамидных групп коротких жестких сегментов (36 и 59 кДж/моль соотв.) обеспечивают образование т. наз. физических поперечных связей и небольших участков кристаллизации. Сочетание гибких и жестких сегментов в макромолекулах создает каучукоподобную структуру, способную к высокоэластичной деформации при небольшом усилии, а относит, удлинение при разрыве достигает 400-700%. Эластич. св-ва и макс. значения деформации растяжения нити можно регулировать, меняя структуру сегментов в полиуретане. [c.29]

    Еще не так давно принимали, что в аморфном состоянии полимеры представляют собой систему хаотически перепутанных макромолекул. Однако работы последних десятилетий показали, что на самом деле уже в аморфном состоянии в полимерах наблюдается некоторая структурная упорядоченность. Эта упорядоченность, естественно, резко возрастает при кристаллизации. Согласно В. А. Каргину и Г. Л. Слонимскому, в аморфных полимерных веществах точно так же, как и в обычных жидкостях, имеются области ближнего порядка, в которых молекулы ориентированы параллельно друг другу, образуя достаточной длины пучки, илн пачки Существование таких пачек ни в коей мере не противоречит высокой эластичности полимеров, так как макромолекулы могут принимать различные конформации и тогда, когда они образуют пачки. Молекулы могут различно располагаться в пачках, да и сами пачки могут принимать самую разнообразную форму. [c.432]


    В кристаллическом состоянии полимеры, как и низкомолекулярные кристаллические вещества, содержат области дальнего порядка, характеризующиеся трехмерной периодичностью и, следовательно, достаточно совершенной молекулярной упаковкой. Размер этих областей (их часто называют кристаллитами) обычно также меньше контурной длины макромолекулы одна и та же молекулярная цепь может проходить через несколько кристаллических областей. Эти кристаллические области в десятки, часто сотни, а иногда и тысячи раз превышают размеры звена полимерной цепи. Конформационный набор макромолекул внутри кристаллических областей резко ограничен по сравнению с конформационным набором в аморфном состоянии. При кристаллизации всегда реализуются конформации, характеризующиеся периодичностью в направлении оси макромолекулы. [c.168]

    При кристаллизации полимеров кристаллы таких больших размеров не получаются, так как на процесс начинают влиять дополнительные факторы, ограничивающие размеры кристаллов (но не сферолитов ). Эти факторы обусловлены длинноцепным строением макромолекул. При кристаллизации полимеров в большинстве случаев макромолекулы входят в кристаллы в складчатых конформациях так, что размер кристалла в направлении осей макромолекул ограничивается длиной складок и в зависимости от условий варьируется в пределах порядка 10 нм. Причины складчатой кристаллизации полимеров пока не установлены однозначно. [c.185]

    Протяженность блоков сопряжения и расстояние между ними зависят от метода синтеза полимера с сопряженной системой связей, его химического строения, конформационной устойчивости макромолекул, энергии межмолекулярных взаимодействий и от физической структуры полимера. Все факторы, приводящие к нарушению копланарности, снижают степень делокализации электронов и ухудшают свойства полимеров, обусловленные системой сопряжения. Кристаллизация, если она не связана с изменением конформации молекул и нарушением копланарности, приводит к улучшению в первую очередь полупроводниковых свойств, так как переход электронов от одной молекулы к другой облегчается упорядоченным расположением макромолекул в полимере. [c.410]

    Для количественного определения содержания звеньев гош- и транс-конформаций необходимо знать коэффициенты поглощения соответствующих полос спектра поглощения инфракрасного излучения. Но такие сведения отсутствуют. Поэтому возможно только качественное сравнение путем сопоставления интенсивностей полос поглощения, связанных с колебаниями групп СН 2 в гош-и транс-конформации. Миллер и Уиллис [13] использовали с этой целью соотношение интенсивности между сильно меняющейся при кристаллизации полосы при 975 см и интенсивности слабо меняющейся полосы при 795 см (рис. 5.2). [c.103]

    Важную роль в книге играют два небольших по объему вводных курса (гл. 1 и 26), в которых приводятся важнейшие понятия полимерной химии, касающиеся структуры полимеров, их стереохимии, конформации, морфологии. Несомненным достоинством этих глав (и всей книги в целом) являются содержащиеся в них опре-деления разнообразных, в том числе и очень распространенных терминов, что делает данную книгу полезным справочным пособием, Определения, которые имеются в этой книге, трудно подчас найти даже в энциклопедических изданиях. (Однако следует иметь в виду, что в некоторых случаях приводимые автором определения несколько отличаются от тех, которые широко используются в отечественной литературе.) Многочисленные фотографии, приведенные в главе, посвященной морфологии полимеров, несомненно способствуют лучшему усвоению вопросов, связанных с кристаллизацией полимеров и организацией различных надмолекулярных структур. [c.6]

    По мнению исследователей, отрицающих пачечную теорию Каргина, в процессе кристаллизации из макромолекул образуются закристаллизованные кластеры в виде ламелл (тонких пластин). Конформация макромолекул чаще всего складчатая (рис. 5.8, а). Из ламелл строится монокристалл. Возможно образование монокристаллов из выпрямленных или спиральных цепей, а также монокристаллов, в которых существуют участки одновременно из складчатых цепей и проходных макромолекул -структура щиш-кебаба ( шашлыка ), показанная схематически на рис. 5.8, б. [c.140]

    Кристаллизация может не доходить до конца, а останавливаться на промежуточных стадиях (элементах). Из этих элементов - лент, пластин, микрофибрилл - в результате их агрегации могут получаться крупнокристаллические образования - сферолиты размером от сравнительно мелких (доли микрометра) до видимых невооруженным глазом (до нескольких сантиметров). Сферолиты - это симметричные поликристаллические структуры диско-, или шарообразной формы. Они могут включать цепи в складчатой конформации и вытянутые. Дефектность сферолитов очень высокая, и иногда они могут даже рассматриваться как двухфазные системы. Сферолиты соединяются друг с другом проходными макромолекулами. Сферолиты образуются при кристаллизации полимеров из концентрированных растворов и в блочных полимерах при кристаллизации из расплавов. Встречаются они и в некоторых природных полимерах, например, в натуральном каучуке. Возникают и другие более сложные кристаллические образования, в частности, при соединении друг с другом монокристаллов пластинчатого типа. [c.141]


    Действительно, мы видели, что макромолекулы являются миниатюрными физическими телами, способными не только к изменению формы и размеров, но и к фазовым переходам, с поправками на особенности термодинамики малых систем. Некоторые макроскопические свойства, например, такое как каучукоподобная эластичность, однозначно задаются уже на молекулярном уровне. Другие же существенным образом зависят от способа упаковки макромолекул в полимерном теле. Собственно, этот способ и представляет собой надмолекулярную структуру. Но при упаковке в сплошное тело макромолекулы сохраняют часть своей индивидуальности, разумеется, в первую очередь это относится к гибкоцепным макромолекулам. Способ их упаковки прежде всего зависит от того, сохранялась ли или изменялась (и если изменялась, то как) их конформация во время конденсации. Сильных изменений конформации можно ожидать, например, при кристаллизации, ибо в этом случае достаточно протяженные участки цепей должны рас-64 [c.64]

    Термодинамические условия кристаллизации и плавления полимеров непосредственно связаны с поворотной изомеризацией. Температура плавления выражается как отнощение разности энтальпий к разности энтропий в твердом и жидком состояниях (см. стр. 38). Увеличение энтропии при плавлении полимера связано, в частности, с переходом от упорядоченной конформации цепи к смеси поворотных изомеров, к статистическому клубку. Энтропия смещения является существенным вкладом в А5 [2,. 3]. [c.132]

    Если бы белковая глобула представляла собой не апериодический кристалл, а сильно флуктуирующее образование, то можно было бы думать, что кристаллизация означает отбор одной или нескольких конформаций из большого их числа в растворе. Но глобула имеет фиксированное строение. Кристаллические белки, как уже сказано, содержат большое количество воды, и их изучают в маточном растворе. Результаты рентгенографического исследования кристалла белка и данные оптических измерений того же белка в растворе согласуются друг [c.273]

    Стеклование. При быстром охлаждении полимера затрудняется изменение конформации макромолекулярных цепей и их кристаллизация из-за резкого возрастания времени релаксации звеньев. Вследствие этого в некоторой температурной области полимер застекловывается без образования кристаллической решетки. Стекловаться могут кристаллизующиеся и некристаллизующиеся полимеры, которые при охлаждении из высокоэластического состояния переходят в стеклообразное. Этот переход характеризуется температурой стеклования (/с)-Стеклование не является фазовым переходом. Полимер, находящийся в стеклообразном состоянии, отличается от эластиче- [c.108]

    Следует отметить, что даже для тщательно обеспыленных полимерных систем наиболее типично гетерогенное зарождение кристаллизации. В расплаве или растворе полимера в определенном интервале температур всегда присутствуют агрегаты макромолекул, характеризующиеся достаточно большими временами жизни. Они и выполняют роль гетерогенных зародышей. Кристаллизация на гетерогенных зародышах начинается уже при небольших переохлаждениях системы и характеризуется относительно короткими периодами индукции. Скорость гетерогенного зародышеобразова-ния в значительной степени зависит от температурной предыстории системы. Если кристаллический полимер с определенной надмолекулярной структурой многократно расплавлять и расплав нагревать до одной и той же температуры, не слишком превышающей Тпл, то при последующем его охлаждении и кристаллизации исходная морфологическая картина каждый раз в точности повторяется. Эта память расплава объясняется тем, что кристаллизация каждый раз начинается на одних и тех же зародышах, которые в условиях опыта не разрушаются и вследствие высокой вязкости расплава за время опыта даже не успевают существенно переместиться в пространстве. Однако если тот же расплав сильно перегреть, то гетерогенные зародыши разрушаются и последующая кристаллизация уже характеризуется гомогенным зарождением. Она начинается при относительно больших переохлаждениях системы и характеризуется большими индукционными периодами по сравнению с таковыми при кристаллизации на гетерогенных зародышах. Гомогенный зародыш, по всей вероятности, представляет собой одну макромолекулу, принявшую в результате флуктуации кристаллоподобную складчатую конформацию. [c.188]

    Большие гибкие молекулы, из которых состоит полимер, значительно ослолс-няют и удлиняют во временн процесс кристаллизации, так как они не могут быстро изменять свои изогнутые конформации. Свой отпечаток на процесс кристаллизации накладывает также и наличие в полимере двух структурных единиц —цепей п сегментов. Внешне это проявляется в более слабом изменении термодинамических свойств, сопровождающих фазовые превращения, по сравнению с низкомолекулярнымп веществами. [c.258]

    Поскольку высокоэластическое состояние обусловлено изменением конформаций макромолекулы, а образование кристаллов означает их правильную и плотную упаковку и, следовательно, значительно затрудняет переход из одной конформации в другую, то кристаллизация приводит к потере полимерами высокоэластических свойств, т. е. кристаллический полимер всегда будет более леестким, чем аморфный. [c.258]

    Разновидностью С. первого типа являются системы, в к-рых устойчивые контакты между макромолекулами обеспечиваются локальной кристаллизацией группы цепей. Отрезки макромолекул между кристаллич. узламй способны к таким же конформац. превращениям под действием внеш. мех. нагрузок, как и химически сшитые полимеры, но верх, предел области обратимой деформации ограничивается т-рой плавления кристаллич. узлов. Выше этой т-ры С. превращ. в обычный р-р полимера. Примером С. этого типа могут служить р-ры поливинилхлорида с невысокой степенью кристалличности, обусловленной низкой синдиотактичностью макромолекул (см. Стереорегулярные полимеры). Локальная кристаллизация в этом случае ответственна за обратимую деформацию высокопластифицир. изделий из поливинилхлорида. Аналогичные С. часто образуются из р-ров сополимеров, у к-рых в результате неоднородного распределения сомономеров в цепи возникает возможность 887 [c.448]

    Интерпретация карт электронной плотности молекулы значительно облегчается при знании аминокислотной последовательности. Однако далеко не каждый Б. удается получить в кристаллич. состоянии. Необходимое условие кристаллизации-сохранение нативной конформации, к-рая часто реализуется лишь в условиях, приближенных к физиологическим. В частности. Б., входящие в состав нуклео-протеидных комплексов (рибосома, вирусы хорошо кристаллизуются только в составе таких комплексоа С помощью обычного рентгеновского излучения проводить анализ таких гигантских образований сложно. В этих случаях используют синхротронное рентгеновское излучение, интенсивность к-рого может быть на два порядка выше. Вследствие этого резко сокращается время эксперимента по регистрации дифракц. отражений, а также снижается кол-во исследуемого в-ва. Ряд мембранных Б. кристаллизуется в условиях нативного липидного окружения с образованием т. наз. двухмерных кристаллов, представляющих из себя регулярно упакованные молекулы Б. в бислойной липидной мембране. При изучении двухмерных кристаллов используют электронную микроскопию и электронографию. [c.252]

    При кристаллизации из расплава кристаллиты агрегируются в разл. надмолекулярные образования, чаще всего всферолиты, в к-рых ламели радиально расходятся из общих центров (рис. 2). Наблюдаются сферолиты диаметром от неск. мкм до неск. см. Предполагается, что в кристаллитах блочных образцов часть макромолекулы имеет складчатую конформацию, а др. часть проходит из кристаллита в кристаллит, связывая их друг с другом. Эти проходные цепи и области складывания образуют аморфную часть сферолитов. [c.535]

    Конформация цепей полимеров виниловых мономеров определяется конфигурацией последоват. асимметрич. атомов С, фрагмента — HR—. В изотактич. полимерах (—СН — HR—) плоская зигзагообразная конформация цепи невозможна из-за стерич. отталкивания соседних групп R. Вследствие этого происходит последоват. транс-гош-ориентация связей и цепь приобретает спиральную конформацию, закрученную влево или вправо. Изотактич. макромолекулы могут образовывать спирали разных видов, а синдиотактические-могут существовать не только в виде спирали, но и в виде плоского зигзага. В тех полимерах, у к-рых радикалы не слишком объемны, спираль содержит три мономерных звена на виток (тип 3,), как, напр., у изотактич. полипропилена (табл. 2). В случае полимеров, содержащих объемные боковые группы, образуются более развернутые спирали. Так, спираль в макромолекуле поли-винилнафталина содержит четыре звена в витке (тип 4,). Спирально-упорядоченные структуры макромолекул характерны для полипептидов, белков, нуклеиновых к-т. Форма и размер заместителей в мономерном звене С.п. определяют не только параметры спиральной конформации цепей в решетке, их т-ры плавления, но и скорость кристаллизации, р-римость и осн. деформац.-прочностные св-ва. Изотактич. полимеры, содержащие очень объемные заместители, характеризуются высокими т-рами плавления и стеклования (табл. 2). [c.429]

    К С. первого типа относят набухшие в р-рителях сетчатые полимеры, напр, полистирол с поперечными диви-нилбензольными мостиками . Их обратимая деформация обусловлена энтропийным эффектом распрямления и восстановления свернутой конформации участков макромолекулярных цепей, находящихся между хим. узлами сшивки. Поскольку энергия хим. связи очень велика, такие С. обратимо деформируются в пшроком интервале т-р от точки кристаллизации р-рителя до начала термич. распада р-рнтеля или полимера при высоких т-рах. [c.448]

    В настоящее время общепризнанно, что переход молекулярного звена в йрак -конформацию является обязательным условием кристаллизащщ полиэтилентерефталата, однако было высказано предположение [14), чхд изменения инфракрасных спектров при кристаллизации не связаны с различными изомерными формами гликольноп части, а, вероятнее всего, обусловлены [c.104]

    Установлено [9], что макромолекулы вытянутого и термофиксированного волокна имеют а-форму с периодом идентичности 154 нм, что соответствует скрученной г ис-конформации. После термообработки под натяжением наряду с а-формой волокна содержат и р-форму с периодом идентичности 290 нм. Макромолекулы р-формы имеют вытянутую зигзагообразную конформацию. Плотность полностью аморфного полимера найдена равной 1,312 г/см , плотность кристаллитов а-формы составляет 1,386 г/см . Температура стеклования аморфного продукта — 65° С, частично закристаллизованного — 84 °С. Максимальная скорость кристаллизации наблюдается при 140 С. [c.266]

    О влиянии релаксационных явлений на прочность кристаллизующихся эластомеров свидетельствует немонотонная зависимость прочности от скоростн растяжения (рис. 5.43). На участке А происходит криста 1лизация полимера (образование фибриллярной структуры), при этом повышается степень ориентации молекул и в кристаллической части, и в аморфной. Трещины илн надрывы зарождаются в аморфной области и.ли иа границе кристалл — аморфная часть, и прочность определяется прочностью аморфных участков Поскольку при кристаллизации повышается степень их ориентации, а следовательно, и прочность, то можно считать, что кристаллизация приводит к упрочнению. В процессе деформирования на участке В макромолекулы не успевают принять необходимую для кристаллизации конформацию и кристаллизация замедляется, а на участке полимер не кристаллизуется и прочность определяется степенью ориентации макромолекул. [c.335]

    Например, в кристаллах миоглобина и гемоглобина их от 5 до ю лизоцима - всего 5. Дж. Рапли, детально изучивший этот вопрос, в своем обзоре пишет "...кристалл глобулярного белка можно рассматривать как упорядоченный и открытый ансамбль компактных молекул, имеющих почти что минимальный контакт с областью, не занятой твердым веществом. Эта область составляет около половины объема кристалла-она непрерывна, заполнена растворителем, аналогичным основной массе жидкости, и состоит из каналов, способных вместить молекулы соединений с молекулярной массой более 4000 [354. С. 257]. Полностью исключить возможность отклонения структуры белка в кристалле от структуры в растворе тем не менее нельзя. Но несомненно и то, что в большинстве случаев изменения могут коснуться только положений некоторых боковых цепей в областях контактов на периферии глобулы. Вероятность, что конформационные нарушения произойдут, и произойдут именно в активном центре, невелика, конечно, в том случае, когда кристаллизация осуществляется в условиях, близких к тем, при которых фермент или другой белок проявляет активность. При идентичности структур фермента в кристалле и растворе различия в эффективности катализа могут быть обусловлены лишь разными условиями диффузии субстрата и продуктов реакции и стерическими затруднениями для конформационных перестроек активного центра. Дж. Рапли по этому поводу замечает "...кристаллический белок обладает ферментативной активностью, и, хотя его свойства несколько отличаются от свойств растворенного белка, сам факт каталитического действия кристаллического фермента служит достаточно убедительным аргументом против предположения о большом изменении конформации в процессе кристаллизации [354. С, 271]. Таким образом, можно заключить, что рентгеноструктурные данные почти всегда правильно отражают укладку основной цепи белка и, как правило, буквально воспроизводят биологически активную конформацию. Поэтому все, что говорится Меклером и Идлис о "жидком" и "твердом белке, по моему мнению, представляется глубоко ошибочным и выглядит не более, чем попыткой спасти идею стереохимического кода. Неудачно также отождествление жидкого" белка с "расплавленной глобулой". Трудно предположить, что короткоживущее промежуточное состояние, которое возникает на последней стадии свертывания полипептидной цепи и о котором пока имеется лишь туманное предствление, является активной формой белка, способной функционировать длительное время. [c.538]

    Для изучения изменений кристаллического состояния, ориентации и конформации молекул полимера в процессе механической обработки может быть использована реооптическая ИК-спектроскопия с Фурье-преобразованием в варианте поляризационной ИКС в ближней и средней областях спектра [7]. При исследовании процессов кристаллизации, осаждения полимеров и размеров образующихся частиц непосредственно в химическом реакторе применяется микроскопия со сканирующим лазером [8]. [c.354]

    В результате ориентации в полимере возникает текстура, обусловливающая анизотропию свойств полимерного материала. У фибриллярных полимеров обычно существует аксиальная (осевая) текстура. В этом случае направлениг осей кластеров и макромолекул более или менее совпадает с направлением оси текстуры (оси волокна). У природных волокон аксиальная ориентация приобретается в ходе биосинтеза. У химических (искусственных и синтетических) волокон аксиальная ориентация может быть достигнута их вытягиванием - одноосным ориентированием. Пленки обычно получаются неориентированными, но при формовании пленок можно применять двухосное ориентирование. Под действием растягивающей силы макромолекулы изменяют свою конформацию, распрямляются и сближаются, в результате чего увеличивается межмолекулярное взаимодействие. Некоторые элементы надмолекулярной структуры могут распадаться, и образуются новые. Ориентирование в аморфном полимере носит характер фазового перехода - направленная кристаллизация. [c.142]

    На первый взгляд это противоречит высказанным в гл. III соображениям по поводу анизотропии механического плавления или механической (ориентационной) кристаллизации. Но мы не случайно подчеркивали, что зачастую макромолекулы кристаллизуются в спиральной конформации. При этом происходит не изменение мерности системы (как до сГкр), а именно изменение знака анизотропии растяжения. До сГкр растяжение [c.326]

    Расчет гибкости основывается на химическом строении макромолекул. Мы все время говорили о полиэтилене. Однако многие макромолекулы содержат в своих звеньях массивные привески, например, полистирол (— СНа— HR—) , где R есть eHs. Вэтих случаях конформации определяются преимущественно взаимодействиями привесков. Сведения о конформациях цепи можно получить методом рентгеноструктурного анализа — если полимер кристаллизуется. При кристаллизации фиксируются определенные ротамеры для всех звеньев цепи и возникает дальний порядок зная положение атомов в данном мономерном звене, мы знаем их для сколь угодно удаленных звеньев, так как расположение атомов строго периодично. Вместе с тем, в кристалле имеется, конечно, и ближний порядок — определенное расположение соседних звеньев. Кристаллический ближний порядок сохраняется при плавлении и растворении полимера, так как кристаллическая структура полимера отвечает минимуму потенциальной энергии. Можно предположить, что ближний одномерный порядок в свободной макромолекуле, образующей статистический клубок, аналогичен дальнему одномерному порядку в кристалле. Эта идея получила подтверждение в расчетах конформаций и в результатах экспериментальных исследований. [c.71]

    Расчет гибкости конкретных полимерных цепей должен основываться на их химическом строении. Так, конформации мономерных звеньев в полимерах типа (—СН2—СНН—) (например, полистирол, см. рис. 3.1) и (—СН2—СНг—) определяются преимущественно взаимодействиями массивных боковых привесков Н. Сведения об этих конформациях удается получить путем исследования кристаллических полимеров методом рентгеноструктурного анализа. Вследствие конфигурационной гетерогенности и дисперсии длин цепей обычные полимеры не кристаллизуются или кристаллизуются лищь частично. Однако стереоре-гулярные полимеры кристаллизуются хорощо, их можно получить даже в виде монокристаллов. Но в блоке и стереорегулярные полимеры кристаллизуются не полностью. Наряду с гетерогенностью, кристаллизации препятствуют кинетические факторы. Для того чтобы образовать кристалл, макромолекулы должны переориентироваться. Стастические флуктуирующие клубки закристаллизоваться не могут — цепи должны вытянуться. Даже если термодинамические условия благоприятствуют развертыванию клубков и ориентации цепей, эти процессы могут потребовать слищком длительного времени по сравнению с временем опыта. Необходимо преодолеть барьеры внутреннего вращения. Равновесные термодинамические свойства поворотно-изомерной макромолекулы определяются разностями энергий поворотных изомеров напротив, кинетические свойства определяются высотами энергетических барьеров. Для кристаллизации существенна не только термодинамическая, но и кинетическая гибкость цепей. Прогрев полимера или его набухание в низкомолекулярном растворителе облегчают кристаллизацию. [c.132]

    Важным аспектом в кристаллизации иолисахаридов является свойство их гидроксильных групп образовывать водородные связи при переходе в кристаллическое состояние. Так, наиример, согласно конформации ксилана, может реализоваться внутримолекулярная водородная связь типа 0-5. .. О -З [3, с.247—248]. Число вариантов упаковки макромолекул и образований иолиморф-ных кристаллов повышается также из-за возможного внедрения в кристаллы воды или некоторых других, ио размеру небольших, молекул. Значительную роль в кристаллизации иолисахаридов играют их полиэлектролитные свойства. [c.154]

    Ацетильные группы маннана, которые размещены нерегулярно, способствуют растворению полисахарида, но ограничивают его -способность к кристаллизации. Однако полностью ацетилирован-ный маннан, т. е. триацетат, способен кристаллизоваться с образованием трехшаговой спирали. Незамещенный маннан образует двухшаговую спираль [10]. Влияние ацетильных групп на изменение конформации Ь-маннана иное, чем это имеет место в других случаях полисахаридов. Например, незамещенный О-кси-лан организован в трехшаговую, а диацетат ксилана — в двухшаговую спираль. Целлюлоза и триацетат целлюлозы имеют двухшаговую спираль. [c.158]

    Способность инсулина к кристаллизации позволила детально изучить пространственную структуру его молекулы методом рентгеноструктурного анализа. Группа ученых нз Оксфорда (Великобритания), возглавляемая Д. Ходжкин, получила в I96Q г. детальную карту гексамера инсулина, содержащего 2 атома цинка. Все 6 молекул инсулина а гексамере имеют почти одинаковую конформацию (рис. 142). [c.249]


Смотреть страницы где упоминается термин Конформация кристаллизация: [c.41]    [c.182]    [c.358]    [c.560]    [c.101]    [c.58]    [c.62]    [c.267]    [c.269]    [c.306]    [c.134]   
Физическая химия полимеров (1977) -- [ c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте