Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисульфидные мостики рибонуклеазе

    Прежде чем проводить расщепление полипептидной цепи, обычно сначала разрывают дисульфидные мостики [138—141]. Для этой цели можно использовать три реакции [см. уравнения (2-20) —(2-22) ]. При работе с рибонуклеазой использовалось окисление надмуравьиной кислотой  [c.173]

    Рибонуклеаза (РНК-аза). Рибонуклеаза из поджелудочной железы быка (молекулярный вес 13 683) была вторым белком после инсулина (содержащего 51 аминокислоту), в котором удалось полностью установить последовательность расположения аминокислот. Молекула этого белка представляет собой поли-пептидную цепочку, состоящую из 124 аминокислотных остатков, в том числе восьми остатков цистеина. Последние соединены попарно четырьмя дисульфидными мостиками, которые заметно ограничивают набор возможных конформаций молекулы. Рибонуклеаза представляет собой фермент, катализирующий гидролитическое расщепление рибонуклеиновой кислоты. Из-за преобладания основных аминокислот его изоэлектрическая точка довольно высока — около pH 9,7. [c.118]


    В одноцепочечных молекулах существуют внутрицепочечные дисульфидные связи. Если имеется только один внутрицепочечный дисульфидный мостик, как, например, в окситоцине, вазопрессине, соматостатине, то говорят о моноциклических одноцепочечных молекулах. Одноцепочечную молекулу, содержащую много внутрицепочечных дисульфидных мостиков (гормон роста, рибонуклеаза и др.), называют полициклической. [c.204]

    Животные лизоцимы состоят из одной полипептидной цепи, включающей 129 аминокислотных остатков, гомологичны между собой и, как и в случае рибонуклеазы, при участии 4 дисульфидных мостиков сворачиваются в характерные третичные структуры. [c.407]

    Если полностью развернуть молекулу рибонуклеазы путем восстановления четырех ее дисульфидных мостиков при действии меркаптоэтанола в 8М растворе мочевины, а затем провести окисление в контролируемых условиях, то молекула вновь приобретает нативную конформацию и полностью восстанавливает ферментативную активность (рис.. 54).  [c.105]

    В молекуле нет дисульфидных мостиков. Известна последовательность аминокислот [47] и конформация цепи [48—51] миоглобина кашалота. Это был первый белок, структура которого определена с помощью рентгеноструктурного анализа. Он отличается от лизоцима и рибонуклеазы тем, что 121 аминокислотный остаток находится в а-спиральных участках [12]. Молекулу можно рассматривать как корзину, состоящую из восьми спиралей, которая содержит гем-группу внутри гидрофобной полости. Выступает на- [c.369]

    Для объяснения других сил, удерживающих пептидные цепи, необходимо наглядно представить себе пространственную конфигурацию, которая называется третичной структурой. Третичная структура более жесткая и поддерживается связями различного характера между боковыми группами пептидных цепей. Наибольшее значение имеют дисульфидные связи — связи между двумя половинами остатка цистина. Предполагают, что существуют и другие связи — ионные, водородные и солевые [106], причем наличие некоторых из них было подтверждено экспериментально. Важность дисульфидных мостиков для придания жесткости третичной структуре доказана экспериментально и подтверждена блокированием функциональных групп. В дальнейшем это будет проиллюстрировано, в частности, в разделе, посвященном структуре рибонуклеазы. [c.385]

    После успешной расшифровки структуры инсулина многие исследователи приступили к изучению структуры других белков. Почти полностью определена первичная структура рибонуклеазы. Недавно было опубликовано сообщение о расшифровке структуры белка вируса табачной мозаики. Структуры инсулина, рибонуклеазы и белка вируса табачной мозаики показаны на фиг. 3. Единственным хорошо исследованным растительным ферментом является папаин. Папаин состоит из одной пептидной цепи с N-концевым изолейцином и 180 аминокислотными остатками , Папаин содержит шесть остатков цистеина, один из которых обладает высокой реакционной способностью, но в его молекуле нет дисульфидных мостиков. [c.32]


    Установлено строение белкового гормона инсулина, регулирующего сахарный обмен в организме, а также строение рибонуклеазы — катализирующего гидролитическое расщепление рибонуклеиновых кислот (стр. 433) на простые нуклеотидные остатки. Молекула рибонуклеазы, имеет цепь из 124 аминокислотных остатков. Эта цепь сложена определенным образом и удерживается в этом состоянии четырьмя дисульфидными мостиками (за счет содержащей такие мостики аминокислоты цистина). В 1969 г. появилось сообщение о синтезе этого фермента. [c.427]

    Изучить структуру белка на самом простом уровне — значит определить его первичную структуру, т. е. последовательность аминокислотных остатков в полипептидной цепи, а также природу и положение поперечных связей. Вторичная структура белка, т. е. наличие и характер спирализации полипептидной цепи, в значительной степени зависит от первичной структуры. Она, кроме того, зависит от pH и ионной силы раствора, а также от тех свойств среды, которые влияют на водородные связи и гидратацию белка. Третичная структура белка возникает в результате дальнейшего изгибания и скручивания полипептидной цепи, уже имеющей вторичную структуру. В некоторых случаях вторичная и третичная структуры всецело определяются первичной структурой белка. Если такие белки подвергать воздействию повышенной температуры или обработать мочевиной, кислотой, щелочью или другими агентами, которые нарушают вторичную и третичную структуру, не затрагивая первичной, то возможно самопроизвольное восстановление их конформации. Примером подобных белков может служить фермент рибонуклеаза. В этом случае последовательность аминокислот в полипептидной цепи определяет даже положение дисульфидных мостиков, так что если после воздействия восстанавливающими агентами провести окисление в мягких условиях, то-образование поперечных дисульфидных связей происходит в тех же местах, где они были раньше. Другие ферменты необратимо денатурируются даже в относительно мягких условиях. В настоящее время не ясно, каким образом столь лабильная и высокоспецифичная структура, как третичная, возникает во время синтеза ферментного белка на поверхности рибосомы. [c.99]

    Примером может служить молекула рибонуклеазы, третичная структура которой фиксируется четырьмя дисульфид-ными мостиками (рис. 66). Если нативную (сохранившую свои природные свойства и, в частности, каталитическую активность) рибонуклеазу обработать мочевиной и меркаптоэта-нолом, то дисульфидные мостики разрываются — происходит денатурация с утратой биологической активности и изменением третичной структуры. После удаления реагентов, вызвавших денатурацию, рибонуклеаза под действием кислорода воздуха снова замыкает свои дисульфидные связи, принимая свойственную ей третичную структуру и вновь приобретая биологическую активность. [c.641]

Рис. 78. Структура рибонуклеазы ( —места дисульфидных мостиков). Рис. 78. <a href="/info/109372">Структура рибонуклеазы</a> ( —места дисульфидных мостиков).
    ОТ применения окислительного расщепления дисульфидных мостиков. Для иллюстрации метода окислительного расщепления ниже описаны приемы, использованные при изучении инсулина и рибонуклеазы. [c.98]

    Анфинсен и Габер [21] часто применяли гель-филь-трацию на сефадексе G-25 в своих классических исследованиях по восстановлению и рекомбинации четырех дисульфидных мостиков рибонуклеазы. Сначала они отделяли восстановленный белок от мочевины, солей и меркаптоэтанола, а после замещения по SH-группам — от избытка других реагентов. Аналогично поступали при обратимом ацилировании свободных аминогрупп рибонуклеазы остатком трифторуксусной кислоты [154]. Дисульфидные мостики рибонуклеазы можно также легко расщепить тринатрийтиофосфатом при этом одновременно тиофосфорилируются образующиеся меркаптогруппы [22]. Кривые элюирования, взятые из этой работы (фиг. 24,Л), показывают, насколько быстро и эффективно меченый белок отделяется от избытка тиофосфата. Локализация остатка кислоты на атоме серы легко и надежно доказывается тем фактом, что (см., например, [155]) восстановлен- [c.144]

    Фракционирование пептидов на ионообменных смолах основано на целом ряде принципов, о которых уже говорилось выше (гл. I и II). Сюда входят и различия в электрохимических свойствах разделяемых фрагментов, и различное сродство неполярных радикалов к бензольным кольцам матрицы смолы, и изменение концентрации конкурирующих ионов в буферном растворе. Поэтому элюция пептидов со смолы достигается путем пропускания через колонку буферных растворов изменяющейся ионной силы и pH. Это изменение концентрации ионов и pH может осуществляться линейно или ступенчато. Элюируемые компоненты идентифицируют нингидриновой колориметрией, лиофилизуют (высушивают из замороженного состояния) и проверяют на гомогенность с помощью хроматографии на бумаге и методом пептидных карт. Негомогенные пики фракционируют дополнительно. В качестве примера можно привести разделение пептидов, полученных триптическим гидролизом окисленной (т. е. лишенной дисульфидных мостиков) рибонуклеазы (рис. 11). [c.84]


    В противоположность инсулину, нри окислении которого надмуравьиной кислотой образуются два фрагмента, окисление дисульфидных связей в рибонуклеазе указывает на наличие одной пептидной цепи [4]. Было предположено, что в отсутствие сульф-гидрильных групп пептидная цепь находится в виде клубка, причем четыре дисульфидных мостика соединяют между собой восемь полуцистиновых пептидных фрагментов. При окислении метионин превращался в сульфон. Во избежание образования побочных хлорнроизводных тирозина [77] необходимо удаление ионов хлора. [c.414]

    Рибонуклеаза состоит из 124 аминокислотных остатков, соединенных в одну пептидную цепь, скрепленную четырьмя дисульфидными мостиками. N-концевая аминокислота в рибонуклеазе — лизин и С-кон-цевая — Е-алин. , [c.521]

    Параллельно с определением последовательности аминокислотных остатков в рибонуклеазе проводилось и определение положения дисульфидных мостиков. Спакман, Мур и Штейн нашли, что рибонуклеазу можно гидролизовать трипсином и химотрипсином без предварительного окисления дисульфидной связи, если проводить гидролиз в 2-мо-лярном растворе хлоргидрата гуанидина. Ими было получено-6 пептидов, которые затем подвергались окислению надмуравьиной кислотой и исследовались. Таким образом было установлено, что 5—8 мостики расположены в положениях 1—б, 2—7, 3—8 и 4—5. [c.524]

    Рибонуклеаза А из поджелудочной железы теленка состоит из одной полипептидной цепи, включающей 124 аминокислотных остатка и сшитой четырьмя дисульфидными мостиками. Фермент относится к фосфодиэстера- [c.401]

    По данным Рихардса [219], рибонуклеаза А при обработке бактериальной протеазой субтилизином расщепляется между остатками А1а-20 и Ser-21 на так называемый S-nenmud (1 — 20) и S-белок с последовательностью 21 — 124, содержащей 4 дисульфидных мостика. Оба компонента после разделения показывают ничтожную биологическую активность. Однако, если смешать их один с другим, биологическая активность восстановливает-ся, т. е. S-пептид и S-белок с помощью невалентных связей собираются в так называемую рибонуклеазу 5, обладающую пространственной структурой, близкой к нативной конформации. [c.403]

    Свертывание может происходить значительно быстрее, чем синтез цепи. Свертывание in vitro осуществляется чрезвычайно быстро, по крайней мере для малых белков, не содержащих дисульфидных мостиков. Нуклеаза стафилококка повторно свертывается в течение 1 с [438], а метмиоглобин — в течение 10 с [439]. Если эти величины применимы также и к условиям in vivo, свертывание цепи может происходить по крайней мере в 10 раз быстрее, чем биосинтез аминокислотной последовательности. Дисульфидсодержащие белки, например панкреатическая рибонуклеаза, повторно свертываются за время от 1 до 10 с, если дисульфидные связи не были разорваны в процессе предшеств ющей денатурации [440]. Однако если такие белки развернуты и восстановлены, последующее свертывание цепи (которое включает образование правильной системы дн-сульфидных связей) продолжается при оптимальных условиях в течение многих минут. [c.182]

    Как известно, функция рибонуклеазы состоит в гидролитическом ра сщеплеиии рибонуклеиновых кислот и олигонуклеотидов. Как мы видели, это один из первых белков, изучавшихся с помощью ЯМР, хотя спектры, полученные на ранних стадиях, не обнаруживали характерных деталей. Рибонуклеаза близка по размеру (молекуляр ная масса 13700, 124 аминокислотных остатка) и форме к лизоциму и является удобным объектом для изучения методом ЯМР. В ее молекуле имеются 4 дисульфидных мостика, 18 остатков основных аминокислот (10 Лиз, 4 Арг и 4 Гис) и только 10 остатков кислых аминокислот (5 Глу и 5 Асп). Таким образом, в растворе при нейтральных pH молекула заряжена положительно. По сравнению с лизоцимом она содержит несколько меньше а-спиральных структур и больше р-структур (остатки 42—49, 71—92 и 94—ПО). В дополнение к 4 Гис имеются также 6 Тир и 3 Фен, но нет остатков триптофана. Полная трехмерная структура рибонуклеазы известна из рентгеноструктурных исследований, проведенных двумя группами авторов [37, 38, 38а]. Форма ее глобулы близка к сферической имеется большая щель, в которой происходит связывание субстрата. С одной стороны этой щели расположены в непосредственной близости друг от друга остатки Гис-12, Гис-119 и Лиз-7, а с другой стороны находится Лиз-41. По данным подробных химических исследований все эти четыре остатка входят в активный центр. [c.363]

    Ковальски [4, 5] и Мендел [7, 8] сообщили о заметных изменениях в спектрах рибонуклеазы, снятых при 60 и 100 МГц. Изменения, главным образом, проявляются в сужении пиков при расщеплении дисульфидных мостиков или при нагревании водного раствора белка выше температуры 65 °С, при которой обычно происходит денатурация. Мак-Дональд и Филлипс [9—11, 24] показали, что если раствор денатурированного белка с неповрежденными ди-сульфидными мостиками охладить ниже температуры ренатура-ции, то при повторном свертывании цепей в спектре на частоте 220 МГц появляется много новых резонансных сигналов и изменяется распределение интенсивностей пиков по всему спектру. Это видно из рис. 14.8. Здесь (а) —спектр рибонуклеазы поджелудочной железы быка, построенный по спектрам составляющих его аминокислот, подобно тому, как это показано для лизоцима на рис. 14.4, а. Спектр (б) относится к термически денатурированному [c.363]

    Основная область научных исследований — биохимия белков. Изучал вторичную структуру ри-бонуклеазы. Обнаружил (1956), что ее молекула состоит из одной длинной нолппептидной цепи, образующей складки , скрепленные дисульфидными мостиками. Разработал метод гидролиза окисленной рибонуклеазы трипсином с предварительным блокированием е-аминогрупп лизина. Предложил метод развертывания полипептид-ной цепи с помощью восстановления 5—5-связей тиогликолевой кислотой, а также метод хроматографического разделения ферментов на фиксированных аналогах субстрата. Изучал зависимость биологической активности фермента от пространственной структуры его молекул и пришел к выводу, что за эту активность ответственна не вся структура. Основоположник нового направления в био- [c.21]

    Существует два общих метода разрушения дисульфидных мостиков окисление и восстановление. При изучении структуры инсулина и рибонуклеазы для окисления дисульфидных мостиков использовали надмуравьи-ную кислоту, под действием которой образуются остатки соответствующих производных цистеиновой кислоты [c.88]

    Вторым крупным достижением в изучении аминокислотной последовательности белковых молекул явилось определение структуры рибонуклеазы, выполненное Хирсом, Штейном, Муром и Анфинсеном. Молекула этого фермента, представленная одиночной полипентидной цепью, состоит из 124 аминокислот и содержит 4 дисульфидных мостика. При изучении ее, так же как и в случае инсулина, использовали окисление надмуравьиной кислотой с последуюш им ферментативным гидролизом. Однако для выяснения первичной структуры этой более крупной молекулы потребовалось ввести в методику некоторые усовершенствования авторы применяли ионообменные смолы для количественного разделения пептидов низкого молекулярного веса и использовали количественные методы для определения аминокислотного состава пептидов. Полная структура рибонуклеазы показана на фиг. 30. [c.94]

    Наиболее убедительным доказательством того, что первичная структура определяет вторичную и третичную, могут, по-видимому, служить опыты по восстановлению нативной структуры белка после денатурации ренатура-ция белка). Если, например, полностью развернуть молекулу рибонуклеазы путем восстановления четырех ее дисульфидных мостиков меркаптоэта-нолом в 8 Af мочевине, а затем вызвать реокисление таких развернутых молекул в контролируемых условиях, то молекулы (от 95 до 100%) вновь приобретают нативную конформацию, что подтверждается восстановлением не только физических свойств, но и ферментативной активности. Этот опыт схематически представлен на фиг. 42. Статистические расчеты показывают, что если бы реконструкция дисульфидных мостиков происходила совершенно произвольно, то нативную конформацию приобретало бы лишь небольшое число молекул —около 1%. В табл. 20 приведены данные по рена-турации некоторых белков. Во всех случаях, за исключением инсулина, степень восстановления нативных структур значительно превышает величину, которой следует ожидать, исходя из статистических соображений. Эти данные вовсе не означают, однако, что процесс образования дисульфидных связей в белках может протекать in vivo без направленного катализа. Реконструкция нативных белковых структур после восстановительного разрыва дисульфидных мостиков представляет собой слишком медленный процесс, не соответствующий скорости синтеза биологически активных белков [c.113]

    Подвергая нативную рибонуклеазу действию меркаптоэта-нола в присутствии мочевины, можно восстановить четыре специфические дисульфидные связи до свободных сульфгидрильных групп и разрушить вторичную и третичную структуру молекулы. Молекула восстановленной рибонуклеазы не обладает ферментативной активностью и состоит из одной полипептидной цепи, содержащей восемь остатков цистеина. Присутствие мочевины в данном случае существенно, так как дисульфидные связи не восстанавливаются, пока сохраняется вторичная и третичная структура. При окислении восстановленной рибонуклеазы с помощью кислорода в отсутствие мочевины в молекуле вновь образуются дисульфидные связи. Если бы при этом была возможна любая комбинация цистеиновых остатков, то всего существовало бы 105 вариантов расположения дисульфидных мостиков в реконструированной молекуле, т. е. вероятность образования системы связей, соответствующей нативному ферменту, была бы меньше 1%. Этот расчет является слишком упрощенным, поскольку мы не учитывали, что распределение остатков цистеина по цепи неравномерно и вероятность связывания соседних сульфгидрильных групп должна быть больше, чем для отдаленных друг от друга групп. Следовательно, некоторые из этих 105 вариантов более вероятны, но это не влияет существенно на результат. Итак, если фермент активен только в конфигурации, которая идентична нативной, и образование дисульфидных мостиков происходит хаотическим образом, то после восстановления и последующего окисления рибонуклеазы ее активность должна равняться примерно 1 % от исходной. Если же дисульфидные связи образуются некоторым специфическим образом, то после окисления активность должна быть равна 1QQВ дея- [c.278]

    Наибольшее значение в белке имеют дисульфидные и гидрофобные связи. В последнее время все чаще высказываются сомнения в том, могут ли водородные связи и связи солевого типа с их относительно низкой энергией обеспечить жесткую конформацию цепей, когда белковые молекулы находятся в водных растворах. Роль водородных и солевых связей относительно невелика. В тех белках, которые содержат остатки цистина — 5—8-мостики играют, по-видимому, важную роль в образовании внутримолекулярных поперечных соединений, в частности между различными участками одной и той же пептидной цепи. Такие связи обнаружены в сывороточном и яичном альбуминах, рибонуклеазе (см. рис. 3), лизоциме, эдестине и др. Вероятно, главная причина этого — относительно высокая прочность дисульфидных мостиков. Неполярные боковые цепи в водных растворах белков окружены молекулами воды, которые могут соединяться с другими частицами воды водородными связями. Взаимное притяжение молекул воды и стремление гидрофобных групп к объединению с группами такого же типа приводит к их вытеснению из водной среды и значительно повышает их сродство друг другу. Гидрофобные связи играют важную роль в поддержании характерной конформации нативных протеинов. [c.34]

    Однако данные, получаемые этим методом, весьма относительны, поскольку сама дифференцировка быстро и медленно обменивающихся атомов водорода часто бывает затруднительной. Причина этого состоит в следующем. Известно, что благодаря образованию отдельных вторичных связей (дисульфидные мостики, взаимодействие боковых радикалов и т. п.) могут возникать напряжения на отдельных участках а-спирали, которые приводят к ослаблению водородных связей. В результате атомы имидного водорода в этих звеньях будут обмениваться несколько быстрее, нежели атомы других пептидных групп, но медленнее, чем при полном отсутствии водородных связей. Например, из 123 пептидных водородов рибонуклеазы 70 обмениваются при 0° медленно, т. е. степень спирализации можно считать равной 57%. Но из этих 70 имидных водородов, стабилизированных Н-связями, 25 способны обмениваться с водой при 0° за несколько суток, 25 дополнительно обмениваются при 38° за сутки и лишь 20 не способны обмениваться вплоть до температуры плавления а-спирали. Отсюда степень спирализации может быть оценена и в 36% (45 медленно обменивающихся Н-атомов), и в 16% (20 необменивающихся Н-атомов). Поэтому метод скорости дейтерации может быть использован для оценки степени спирализации белка лишь в совокупности с другими приемами анализа. [c.107]

    Опыт подтверждает это. В частности, важны, по-видимому, водородные связи, образуемые боковыми тирозиновьши ядрами с глютаминовой и асиарагиновой кислотой (см. стр. 63). Соответствующие водородные связи закрепляют третичную структуру и без дисульфидных мостиков, а последние делают ее более прочной, что доказано опытами Анфинсена по отравлению процесса регенерации восстановленной рибонуклеазы. Оказалось, что до бавление 8М мочевины, дезорганизующей вторичную структуру цепи, приводит к тому, что кислород сшивает все сульфгидриль-ные группы в полном беспорядке и белок остается навсегда денатурированным. [c.86]

Рис. 49. Восстановление активности рибонуклеазы прп ее реконструкцип путем окисления сульфгидрнльиых групп, образовавшихся ири разрыве дисульфидных мостиков. Рис. 49. Восстановление <a href="/info/1434362">активности рибонуклеазы</a> прп ее реконструкцип <a href="/info/497151">путем окисления</a> сульфгидрнльиых <a href="/info/14537">групп</a>, образовавшихся ири разрыве дисульфидных мостиков.
    Участие аминокислот в образовании активного каталитического центра удалось внимательно исследовать в рибонуклеазе. Рибонуклеаза состоит только из одной пептидной цепи из 124 остатков аминокислот , последовательность которых довольно хорошо изучена. Фермент имеет 4 дисульфидных мостика, которые поддерживают петли пептидной цепи, и рибонуклеаза принимает характерную для нее конформацию (рис. 60). При восстановлении дисульфидных связей образуется 8 SH-rpynn и фермент теряет свою активность. Восстановленную рибонуклеазу можно окислить воздухом при pH 7, и тогда ее активность возвращается в большой мере. [c.213]

    Последовательность аминокислотных остатков отдельных участков цепи в молекуле рибонуклеазы была также расшифрована группой К- Анфинсена в Университете в Бетесде. Как уже упоминалось, эта группа ученых установила последовательность Ы-концевых аминокислот, расшифровала порядок чередования аминокислотных остатков, начиная с 32-го и кончая 49-м (сер.арг.асп-МНг.лейц.тре.лиз.асп.арг.), а также четырех последних остатков в цепи (асп.ала.сер.вал.) [73]. Одновременно К. Анфинсен [403] и Д. Спекман [414] определяли положение дисульфидных мостиков в молекуле. Результатом этих исследований было установление К- Хирсом, С. Муром и У. Стейном [255] полной формулы рибонуклеазы, которая отвечала всем экспериментальным данным. [c.137]

    Установлено строение и ряда других более сложных гормонов полипептидной природы (адренокортикотропный гормон, меланофорный гормон, глукагон). Вскоре после установления строения инсулина был полностью расшифрован порядок соединения аминокислотных остатков в ферменте рибонуклеазе (расщепляет рибонуклеиновую кислоту). Оказалось, что он содержит одну полипептидную цепь из 129 остатков аминокислот (молекулярная масса 13 500). Участки этой цепи в четырех местах фиксированы четырьмя дисульфидными мостиками. Быстрым темпом идет выяснение строения белков, еще более сложных, чем инсулин и рибонуклеаза, например фермента трипсина (молекулярная масса 45 ООО) и др. [c.308]


Смотреть страницы где упоминается термин Дисульфидные мостики рибонуклеазе: [c.103]    [c.212]    [c.106]    [c.188]    [c.555]    [c.188]    [c.101]    [c.405]    [c.219]    [c.278]    [c.294]    [c.294]   
Биохимия Том 3 (1980) -- [ c.106 , c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеаза



© 2024 chem21.info Реклама на сайте