Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографические методы разделения ферментов

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]


    Среди лабораторных методов очистки, фракционирования и анализа структуры белков, нуклеиновых кислот и их компонентов совокупность различных хроматографических методов занимает центральное место. Ни один другой метод не может сравниться с хроматографией по широте количественного диапазона. Начиная от препаративных колонок объемом в несколько литров, на которых можно вести фракционирование граммовых количеств препарата на первых этапах выделения фермента, через разделение близких по своей природе компонентов очищенной смеси веществ, количество которых измеряется миллиграммами или долями миллиграмма, этот диапазон простирается до микроанализа аминокислотного состава белка, когда на колонку вносят сотые доли микрограмма исходного гидролизата. Вне конкуренции остается и разнообразие физико-химических параметров, по которым может осуществляться хроматографическое фракционирование молекулярные размеры, вторичная или третичная структура биополимеров, растворимость, адсорбционные характеристики молекул, степень их гидрофоб-ности, электрический заряд и, наконец, биологическое сродство к другим молекулам. [c.3]

    Непрерывная хроматографическая очистка (НХО) представляет собой массообменный метод разделения, который появился вскоре после того, как в 1952 г. Джеймс и Мартин положили начало развитию газовой хроматографии (ГХ). В то время как в аналитической ГХ основное внимание уделяется разделению ничтожных количеств веществ, в НХО делается попытка оптимизировать основные составляющие ГХ, а именно инертный газ, твердый носитель и относительно нелетучую жидкость с целью разделения гораздо больших количеств смесей веществ. Разделяемые смеси включают соединения от углеводородов с малым молекулярным весом до эфирных масел, хелатов металлов и т. д. Совсем недавно область применения методов НХО расширилась и стала включать в себя непрерывное разделение смесей нелетучих веществ, таких, как ферменты, белки и углеводные полимеры, например декстран и другие. Соответствующие разделительные системы могут состоять из инертной подвижной жидкой фазы и такого хроматографического носителя, как шарики из двуокиси кремния с контролируемой пористостью. [c.332]

    Ранние методы разделения рацематов аминокислот основывались на избирательной кристаллизации, однако доступность относительно чистых ферментов, а именно ацилаз, привела к тому, что ферментативные методы по существу их вытеснили. В последние годы наблюдается дальнейший крен в сторону развития хроматографических методов, так как они практически более удобны. В данном разделе акцент будет сделан на методы, имеющие препаративное значение, а не на те, которые пригодны лишь для аналитического масштаба. [c.244]


    Анализ продуктов жизнедеятельности организмов является одной из самых трудных задач биологии, химии и физики. В живом организме в процессе обмена веществ синтезируются и распадаются сложнейшие соединения (белки, углеводы, жиры, ферменты, витамины, гормоны и т. д.). Для очистки и разделения веществ в органической химии и биохимии широко применяются методы, основанные на различиях в упругости пара (обычная перегонка, перегонка с водяным паром, фракционная перегонка, перегонка в вакууме, сублимация и др.) и растворимости веществ (распределение между двумя несмешивающимися жидкостями, экстракция, осаждение специально подобранными веществами или изменением pH раствора и другие приемы). Бурное развитие химии в XX в. вызвало необходимость создания принципиально нового метода выделения и очистки природных веществ, применяемого в тех случаях, когда приведенные выше приемы вызывают глубокие изменения состава выделяемых веществ и когда последние находятся в природном материале в сложных смесях или в ничтожном количестве. Новый метод разделения веществ был открыт в 1903 г. выдающимся русским ученым М. С. Цветом и назван им хроматографическим методом. [c.5]

    Гидролиз химотрипсином проводят при 37° С в щелочной среде (pH 8,0—8,6). Отношение фермента к белку 1 100 (по весу). При длительном гидролизе фермент к субстрату добавляют двумя или тремя порциями. Природа буфера, используемого для гидролиза, зависит от характера последующей работы. При разделении пептидов гидролизата хроматографическими и электрофоретическими методами на бу- [c.140]

    В настоящее время разделение рацематов а-аминокислот осуществляют в промышленном масштабе. Для этого широко используют хроматографическое разделение на носителях с хи-ральными группами с помощью закрепленных (обычно говорят иммобилизованных) на носителях ферментов, а также методы селективной кристаллизации. Помимо этого достаточно часто применяют химические методы расщепления рацематов (см. разд. 8.1.2). [c.453]

    На коммерческий уровень поставлено ферментативное разделение рацемических смесей аминокислот и эфиров терпенов. Такие смеси аминокислот образуются при химическом синтезе, и разделение их по оптическим свойствам составляющих имеет важное практическое значение. Известно, что для этого можно использовать соответствующие физико-химические методы (механическое разделение, избирательная кристаллизация, хроматографическое разделение) и химические подходы (фракционная кристаллизация солей диастереомеров), но гораздо, более эффективными и удобными оказываются процессы, основанные на стереоспецифичности ферментов. Укажем некоторые из используемых здесь приемов. [c.169]

    Для получения очищенных препаратов ферментов с успехом применяются современные методы хроматографического фракционирования на колонках, заполненных, например синтетическими смолами, и методы электрофоретического разделения. [c.134]

    Обладая высокой чувствительностью, методы хроматографии дают возможность разделять и выделять в чистом виде различные вещества из сложных смесей близких по своей природе химических соединений. Именно благодаря хроматографическому анализу появилась возможность разделения столь близких по свойствам соединений, как стереоизомеры, а также разнообразные вещества, входящие в состав растений, — аминокислоты, органические кислоты, различные углеводы, ферменты, пептиды, неорганические вещества и многие другие. Попутно отметим, что разделение веществ с применением физических и химических методов является сложным и трудоемким процессом, который требует значительно больше времени. [c.348]

    Электрофоретический метод отличается простотой выполнения и избирательностью. Это единственный из известных методов оценки активности рестриктаз, в результате применения которого имеется возможность судить о характере расщепления субстрата — каждая специфическая эндонуклеаза генерирует уникальный набор фрагментов ДНК субстрата, который после проведения электрофоретического их разделения дает определенный, характерный для этого фермента набор зон в геле. Рассмотрение таких картин позволяет судить не только о наличии рестриктазы в исследуемом растворе, но отчасти и об ее активности и субстратной специфичности. Последнее свойство обсуждаемого метода оказывается очень важным в тех случаях, когда в фракционируемой смеси содержится более чем одна рестриктаза. Кроме того, снижение интенсивности и четкости зон ДНК позволяет судить о наличии в фракциях неспецифических нуклеаз. Однако, электрофоретический метод наряду с отмеченными достоинствами имеет существенный недостаток, выражающийся в том, что количественное определение активности исследуемых ферментов проводится путем оценки перехода неполное расщепление—полное расщепление субстрата. Для того, чтобы идентифицировать этот переход, необходимо проводить обработку субстрата различными количествами фермента, что значительно увеличивает число анализируемых проб. Если учесть, что в ходе хроматографической очистки такой оценке подлежат многие десятки фракций, трудоемкость количественного определения активности рестриктаз электрофоретическим методом в таких опытах становится очевидной. Однако использование именно этого метода оправдывает себя в случае определения активности конечного препарата, предназначенного для применения в качестве аналитического реагента. В этом случае необходимо знать количество фермента, обеспечивающее исчерпывающее специфическое фрагментирование [c.127]


    Чрезвычайно интересной является возможность выделить и изучить фрагмент, т. е. часть молекулы фермента, сравнительно небольшую, но включающую активный центр, точнее — группировку, выполняющую каталитический акт. Большие трудности в этой работе возникают потому, что при расщеплении (гидролизе) молекулы фермента образуется не однородное вещество, а очень сложная смесь разнообразных пептидов. При этом активностью обладают не все, а лишь немногие. Их трудно выделить и не так просто расшифровать их структуру. Однако современная химия белка располагает исключительно тонкими (главным образом, хроматографическими) методами разделения пептидов. Эти методы очень чувствительны и при их помощи можно отобрать из гидролизата практически любые структуры. Р1меются химические способы и для выявления всех деталей состава активных осколков белка. Поэтому можно ожидать, что этим путем будут получены важные сведения о природе активных центров ферментов. [c.328]

    Хроматографические методы, в которых разделение компонентов смеси основано на различии в размерах, форме или суммарном заряде молекул, часто недостаточно эффективны для разделения смесей белков. В таких случаях может оказаться полезной аффинная хроматография [48]. Успех метода зависит от того, удастся ли найти вещество, которое будет специфически взаимодействовать с подлежащим очистке белком. Для фермента таким веществом может быть конкурентный ингибитор катализируемой этим ферментом реакции, а для участвующего в гормональной регуляции белка-рецептора — соответствующий гормон. Это вещество связывают с подходящим нерастворимым гидрофильным носителем, и полученный материал используют при хроматографии как стационарную фазу. Вещества такого типа часто сами оказываются большими природными макромолекулами, и приемы, используемые для соединения их с носителями, сходны с методами приготовления иммобилизованных ферментов [см. разд. 27.4.2 (5)]. Реакции, с помощью которых белки, содержащие аминогруппы или фенольные группировки, могут быть связаны с носителем на основе сшитого полиакриламида, содержащего некоторое число гидразидных или 4-аминоанилидных остатков (схемы 30, 31 Б — остаток белка). Хорошие результаты получены в тех случаях, [c.322]

    Так как в пищевой промышленности и медицине применяют только ь-изомеры аминокислот, рацемические смеси необходимо разделять на отдельные энантиомеры. Для этой цели используют различные хроматографические методы, в том числе и основанные на ионном обмене. Химические методы разделения, связанные с взаимодействием рацематов с определенными асимметрическими соединениями, достаточно сложны и не находят применения в промышленных условиях. Гораздо более эффективным является ферментативный метод разделения рацематов аминокислот, впервые разработанный и использованный японскими исследователями. В основу метода положена способность фермента ацилазы ь-аминокислот специфически гидролизовать только ацилированные ь-аминокислоты без воздействия на О-сте-реоизомеры. Ацилированные аминокислоты, полученные методом химического синтеза, подвергаются воздействию иммобилизованного фермента ацилазы, причем после полного ферментативного гидролиза образуется смесь ацилированной о-аминокислоты и свободного ь-стереоизомера, легко разделяющиеся простой кристаллизацией или посредством ионообменной хроматографии. [c.22]

    Основная область научных исследований — биохимия белков. Изучал вторичную структуру ри-бонуклеазы. Обнаружил (1956), что ее молекула состоит из одной длинной нолппептидной цепи, образующей складки , скрепленные дисульфидными мостиками. Разработал метод гидролиза окисленной рибонуклеазы трипсином с предварительным блокированием е-аминогрупп лизина. Предложил метод развертывания полипептид-ной цепи с помощью восстановления 5—5-связей тиогликолевой кислотой, а также метод хроматографического разделения ферментов на фиксированных аналогах субстрата. Изучал зависимость биологической активности фермента от пространственной структуры его молекул и пришел к выводу, что за эту активность ответственна не вся структура. Основоположник нового направления в био- [c.21]

    Гель-хроматография характеризуется чрезвычайной простотой технических приемов, а мягкие условия разделения позволяют применять ее для очистки весьма лабильных соединений (в частности, многих ферментов). Если учесть к тому же, что здесь разделение осуществляется на основании совсем иных принципов, чем при других хроматографических методах, то становится вполне понятным появление за короткий срок большого числа публикаций, так или иначе касающихся гель-хроматографии. В связи с этим, естественно, возникла необходимость обобщить накопленные данные, чтобы облегчить исследователю ориентировку в столь обширном потоке литературы. Эта задача успешно- выполнена в небольшой книге Г. Детермана Гель-хроматография , перевод которой предлагается советскому читателю. В книге про- 10 и ясно изложены метод гель-хроматографии, его [c.5]

    Для выделения летучих компонентов чаще всего используют методы экстракции, вакуумной перегонки, перегонки с паром, продувки потоком воздуха или инертного газа или сочетание этих методов. Разделение можно проводить при низких или высоких температурах. В условиях низких температур термическое разложение лабильных соединений сведено к минимуму, но при этом создаются благоприятные условия для ферментативных реакций. При высоких же температурах ферменты дезактивируются, но усиливаются такие процессы, как гидролиз и другие самопроизвольно протекающие реакции. Основными компонентами при улавливании летучих компонентов при низких температурах явлйются вода и двуокись углерода. Они не представляют интереса при анализе и перегружают хроматографическую колонку. Поэтому при выборе методики разделения следует исходить из двух основных моментов необходимо избежать осложнений, возникающих из-за температурных эффектов, и найти методы избирательного концентрирования летучих органических веацеств. [c.226]

    Предложил метод развертывания полипептидной цепи с помо-щью восстановления 8—8-связей тиогликолевой к-той, а также метод хроматографического разделения ферментов на фиксированных аналогах субстрата. Изучал зависимость биол. активности фермента от пространственной структуры его молекул и пришел к выводу, что за эту активность ответственна вся структура. Основоположник нового направления в биохимии — учения о молекулярной эволюции. Предложил новую трактовку процесса биол. эволюции некоторые аминокислотные последовательности в молекуле фермента строго необходимы для достижения определенной каталитической активности и жестко сохраняются в эволюции, другие же являются лишь химическим рудиментом . [c.18]

    Поскольку здесь рассматриьаются общие химические черты ферментативного катализа, мы в большинстве случаев будем избегать подобных осложнений и ограничимся, где это возможно, только простейшим типом мономерного фермента. Белок этого типа — обычно большая молекула, состоящая из одной полипептидной цепи, содержащей, возможно, несколько сот аминокислот и свободно существующая в растворе внутри клетки. Такой белок можно очистить до степени гомогенности (по нескольким различным критериям), используя хроматографические и электрофоретические методы, пригодные для разделения заряженных макромолекул в водной среде [5]. На этой стадии очистки при благоприятных условиях белок можно закристаллизовать. Многие ферменты, таким образом, становятся доступными в качестве вполне определенных органических соединений, удовлетворяющих обычным критериям чистоты, и они, естественно, могут быть синтезированы 6]. Они также могут быть получены в значительных количествах, i e хорошо изученные ферменты — например, трипсин, химотрипсин, лизоцим и рибонуклеаза — доступны в граммовых количествах. Значительное число других доступны коммерчески в миллиграммовых количествах. [c.450]

    Аффиная хроматография является самостоятельной областью жидкостно-адсорбционной хроматографии, выделяемой по специфическому механизму взаимодействия разделяемых веществ с сорбентом. Метод основан на характерной особенности биологически активньгх веществ селективно и обратимо связывать определенные вещества, называемые аффинными лигандами или аффиантами. Таким образом, ферменты связывают соответствующие ингибиторы, антитела — антигены, гормоны — их рецепторы и т.п. Если по аналогии с обращенными фазами приготовить сорбенты с привитыми аффинными лигандами, появляется возможность селективного хроматографического выделения близких по свойствам биологически активных соединений и их разделения между собой. Наиболее часто применяемые аффинные лиганды приведены в табл. 3.65. [c.201]

    Полипептидный гормон инсулин участвует в регуляции углеводного обмена. Молекула бычьего инсулина содержит 51 аминокислоту и состоит из двух цепей. Последнее подтвернедается присутствием двух N-концевых аминокислот — глицина и фенилаланина. Цепь с N-концевым глицином называется А-цепью и содержит 21 аминокислоту цепь с N-концевым фенилаланином называется В-цепью, и в состав ее входит 30 аминокислот. Сэнгер и его сотрудники окислили инсулин надмуравьиной кислотой и провели хроматографическое разделение двух цепей. После этого каждую цепь подвергли ферментативному и кислотному гидролизу. На фиг. 27 и 28 указаны главные пептиды, полученные при гидролизе каждой из цепей, и приведены полные структуры цепей, установленные на основе этих данных. Видно, что места, в которых трипсин, химотрипсин и пепсин расщепляют цепи, согласуются с тем, что мы знаем о специфичности этих ферментов в отношении синтетических соединений. Обнаружено также и несколько дополнительных мест расщепления, в частности при гидролизе, катализируемом пепсином. Особо следует обратить внимание на то, что перекрывающиеся пептиды, полученные при использовании разных гидролитических методов, дополняют друг друга и позволяют однозначно установить общую аминокислотную последовательность. Для каждого из главных пептидов, приведенных на фиг. 27 и 28, аминокислотная последовательность была определена путем неспецифического гидролиза кислотой, установления последовательности аминокислот в образовавшихся ди-, три- и тетрапептидах и объединения полученных данных в общую картину. Как указывалось выше, в настоящее [c.91]

    В последующих работах с ферментами метаболизма фенолов с успехом может быть использована методика, разработанная при изучении допаминги-дроксилазы. Серьезная трудность в первоначальных исследованиях этой ферментативной системы состояла в трудоемком хроматографическом разделении продуктов и реагирующих веществ. Левин и сотр. [76] предложили метод, основанный на относительно легкой окисляемости боковой цепи норэпинефрина, имеющей соседние гидроксильную и аминогруппы. Если а-С -допамин обработать гидроксилазой, а полученный норэпинефрин — перйодатом натрия, то боковая цепь расщепляется и образуется радиоактивный формальдегид. Улавливание и расчет количества формальдегида дают быстрый метод для исследования реакции гидроксилирования. [c.329]

    Согласно данным табл. 13, препарат фермента очищен в 250 раз. Хроматографический профиль элюции пероксидазы после разделения на сефадексе С-100 идентичен для здоровых и инфицированных растений (рис. 12). Фракции с наибольшей пероксидазной активностью (отмечены штрихом) использовали для последующей работы. Методом диск-электрофореза в спектре пероксидаз, выделенных из здоровых и вирозных [c.74]

    Основными этапами выделения любой рестриктазы является получение бесклеточных экстрактов и собственно очистка целевых ферментов, осуществимая с применением традиционных приемов препаративной биохимии белковых соединений (высаливание, хроматографическое фракционирование и т. д.). Вместе с тем следует отметить, что процессам выделения рестриктаз, как и других ферментов нуклеинового обмена, характерен ряд специфических особенностей. В первую очередь это замечание относится к тому вниманию, которое уделяется разделению целевых ферментов и нуклеиновых кислот, в принципе способных влиять на перераспределение как рестриктаз, так и нуклеаз между фракциями, получаемыми в результате применения различных методов выделения целевых ферментов. Поэтому этот этап является одним из ключевых в схемах выделения рестриктаз, от результатов проведения которого во многом зависит успех дальнейшей их очистки. [c.143]


Смотреть страницы где упоминается термин Хроматографические методы разделения ферментов: [c.89]    [c.12]    [c.12]    [c.127]    [c.541]    [c.329]    [c.261]    [c.230]    [c.255]    [c.445]    [c.152]   
Ферменты Т.3 (1982) -- [ c.44 , c.63 , c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы хроматографические

Методы хроматографического разделения



© 2025 chem21.info Реклама на сайте