Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения макромолекулярные

    Растворы высокомолекулярных соединений нмеют значительную вязкость, которая быстро возрастает с увеличением коицеитрации растворов. Повышение концентрации макромолекулярных растворов, добавки веществ, понижающих растворимость полимера, и, часто, понижение температуры приводят к застудневанию, т. е. превращению сильно вязкого, но текучего раствора в сохраняющий форму твердообразный студень. Растворы полимеров с сильно вытянутыми макромолекулами застудневают ири небольшой коицеитрации раствора. Так, желатин и агар-агар образуют студии и гели в 0,2—1,0% растворах. Высушенные студни способны вновь набухать (существенное отличие от гелей). [c.315]


    Иногда элементарные звенья, имея одинаковый химический состав, различаются по своему пространственному строению. В этом случае вся макромолекулярная цепь будет состоять из многократно повторяющихся участков, имеющих совершенно одинаковую пространственную структуру. Такие участки называются периодами идентичности. Они определяют расстояние между двумя одинаково расположенными в пространстве группами нли атомами. Классическим примером высокомолекулярных соединений, у которых разные периоды идентичности обусловлены различной пространственной структурой (строением), несмотря на одинаковый химический состав элементарных звеньев, являются натуральный каучук и гут- [c.374]

    При сополимеризации смеси мономеров образуются цепи с более или менее случайным распределением звеньев каждого типа при применении специальных методов из цепей, построенных из нескольких мономерных единиц, могут образоваться полимерные соединения по типу блок-сополимеров (сшивка по концам цепей) или привитых сополимеров (сшивка в средней части цепей). Мы не будем углубляться дальше в эту высокоспециализированную область макромолекулярной химии и ограничим рамки данного раздела изложением основ каталитических процессов полимеризации. [c.102]

    Во втором случае наблюдается соединение макромолекулярных [c.271]

    Ферменты — это сополимеры, состоящие из различных аминокислотных мономеров. Поэтому легко понять, почему использованию синтетических органических полимеров для воздействия на активность низкомолекулярных соединений уделяется в последнее время все большее внимание [168] эти реакции могут служить в качестве моделей для более сложных ферментативных процессов. Хотя полимерные катализаторы значительно менее эффективны, чем ферменты, обнаружено некоторое сходство между природными и синтетическими макромолекулярными системами. В частности, полимер с заряженными группами склонен концентрировать и/или отталкивать находящиеся вблизи него низкомолекулярные ионные реагенты и продукты, и, следовательно, он будет функционировать как ингибитор или ускоритель реакции, протекающей между двумя молекулами. Однако если к такому полимеру присоединить еще и каталитически активные группы, то уже сама молекула полимера, а не его противоионы, будет принимать участие в катализе 169, 170]. [c.294]

    Высокомолекулярные соединения отличаются от обычных веществ особым характером их химических превращений. Наименьшей частицей в макромолекулярной цепи, участвующей в химических реакциях, выступает не молекула в целом, как в ряду низкомолекулярных соединений, а элементарное звено или участок цепи макромолекулы. Это связано с гибкостью макромолекулы в результате некоторые ее участки ведут себя как кинетически самостоятельные единицы, проявляя высокую автономность. Наряду с реакциями элементарных звеньев происходят и макромолекулярные реакции полимеров, при которых макромолекула ведет себя как единое целое. [c.382]


    Если воду заменить спиртом, то образуются сложные эфиры акриловой кислоты, которые широко используют при получении макромолекулярных соединений  [c.222]

    Смолы более полидисперсны, чем асфальтены [236]. Смолы и асфальтены представляют собой непрерывный ряд разнообразных трудноразделимых высокомолекулярных соединений гибридного строения. Поэтому вводятся термины, обосновывающие некоторый переходный размер молекулы, например легкие асфальтены [236], тяжелые и легкие смолы. Провести четкую границу между смолами и асфальтенами трудно, как и между олигомерными и полимерными соединениями, встречающимися в практике макромолекулярной химии синтетических полимеров. Однако последние полидисперсны только по массе, а смолисто-асфальтеновые вещества полидисперсны и по массе и по составу элементарного звена. [c.268]

    Макромолекулярные цепи с гетероатомами образуются при полимеризации некоторых карбонильных соединений, а также гетероциклических веществ. При полимеризации мономерного формальдегида (безводного) или ацетальдегида образуются не только низкомолекулярные циклические соединения и макромолекулы [при низких температурах в присутствии (СНз)зМ], напрнмер  [c.942]

    Гетероцепные полимерные соединения, в макромолекулярных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы, фосфора, т. е. атомы элементов, обычно входящих в состав органических соединений. К этой группе полимеров относят целлюлозу, белки, полиэфиры, полиамиды, полиуретаны, полиэпоксидные соединения, [c.17]

    Полимеризационные соединения, получаемые реакцией полимеризации, происходящей в результате раскрытия кратных связей в ненасыщенных низкомолекулярных веществах или разрушения неустойчивых циклов и соединения их в макромолекулярные цепи. К этой группе относят полимерные соединения, получаемые из этилена, производных этилена, диенов, ацетилена, различных циклических органических соединений. В процессе полимеризации пе выделяется каких-либо побочных продуктов, поэтому состав образующихся макромолекул полимера соответствует составу исходного низкомолекулярного вещества—мономера. [c.18]

    Озониды—неустойчивые соединения и легко разрушаются, особенно при действии воды или спирта. По месту распада озонида происходит и разрушение макромолекулы. По строению образовавшихся осколков цепей можно установить первоначальную структуру макромолекулярной цепи н расположение в ней двойных связей  [c.243]

    В последние годы создана химия новых синтетических полимерных соединений, в макромолекулярных цепях которых углеводородные звенья, сочетаются с атомами, обычно не содержащимися в природных органических веществах. Такие высокомолекулярные синтетические вещества, получившие название п о л и мерные элементоорганические соединения, сочетают свойства, присущие неорганическим материалам—термическую стойкость, часто огнестойкость и твердость, с эластичностью, термопластичностью и растворимостью, свойственными полимерным органическим веществам.  [c.472]

    В первом разделе справочника содержатся сведения о физико-химических свойствах химических соединений, используемых в процессах добычи и транспорта нефти в виде индивидуальных веществ или как компонент какого-либо состава. Все вещества условно подразделены на четыре группы неорганические вещества, органические вещества, макромолекулярные соединения и поверхностно-активные вещества. В каждой группе вещества расположены в алфавитном порядке, приведены их физические свойства молекулярная масса, внешний вид, плотность, температура плавления, температура кипения, растворимость и т. д. Для каждого соединения описано его назначение в используемых процессах добычи и транспорта нефти или его функциональное назначение в многокомпонентных системах. Ввиду разбросанности сведений о физико-химических свойствах индивидуальных веществ по многочисленным литературным источникам использованная в этом разделе литература сгруппирована и приведена перед таблицами, без привязки источников информации к каждому веществу. [c.5]

    Отсутствие в справочнике некоторых данных о физических свойствах макромолекулярных соединений и поверхностноактивных веществ объясняется тем, что свойства ряда веществ еще недостаточно изучены либо имеющиеся сведения не опубликованы. Поэтому для Придания справочнику единообразия и компактности, сведения по этим классам веществ даны в виде сокращенных таблиц по сравнению с органическими и неорганическими соединениями. [c.6]

    Сведения о физико-химических свойствах макромолекулярных соединений взяты из следую 81, 83, 89, 91, 95, 9(), 97, 99, 100, 102, 110, 111, 112, 116, 120, 123, 127, 129, 130, 131, 132, 140 [c.54]

    Все рассмотренные методы составляют отдельную область коллоидной химии — осмометрию растворов высокомолекулярных соединений. Подробные сведения об осмометрии читатель может получить в специальных руководствах, например в [1, 2]. Несмотря на то что ее теоретические основы уже разработаны, эта область продолжает развиваться, главным образом в связи с развитием макромолекулярной химии и технологии. [c.44]


    Пространственно-разделенные аддукты. Практически неизбежный для неорганических полимеров переход с течением времени от системы водородных связей к системе кислородных мостиков делает целесообразным отнесение твердых соединений промежуточного типа — пространственно-разделенных аддуктов, макромолекулярные или надмолекулярные структурные единицы которых соединены водородными связями,— к твердым соединениям вида КАС. [c.47]

    Известно, что существуют два основных типа химических превращений реакции, происходящие с расчленением исходных соединений на структурные единицы, и реакции, в которых твердое соединение не расчленяется до конца на отдельные структурные единицы, а взаимодействует с реагентами своими функциональными группами. В химии высокомолекулярных соединений реакции первого типа называются макромолекулярными, а реакции второго типа — полимераналогичными. Вместе с тем во многих реакциях твердое вещество подвергается одновременно и деструкции и превращениям функциональных групп. [c.175]

    В отличие от полимераналогичных превращений, рассмотренных в предыдущей главе, ДЭП — процесс макромолекулярного характера. Он начинается с изменения состава функциональных групп исходного твердого соединения, т. е. -с полимераналогичного превращения, но продолжается путем изменения состава и строения его макрорадикала — остова твердого вещества. [c.219]

    По химическому составу основной макромолекулярной цепи высокомолекулярные соединения делятся на два больших класса гомоцепные, цепи которых построены из одинаковых атомов, и гетероцепные, макромолекулярная цепь которых содержит атомы различных элементов. Среди гомоцепных высокомолекулярных соединений наиболее важны те, макромолекулярные цепи которых состо- [c.378]

    В течение последних трех десятилетий были сформулированы и установлены основные представления, характеризующие высокомолекулярные соединения как особую область органической химии, имеющую свою специфику, определяемую в перв5 ю очередь большим размером молекул полимерных соединений. Поэтому Штаудингер [1] предложил называть молекулы высокомолекулярных веществ макромолекулами, а всю область высокомолекулярных соединений макромолекулярной химией. [c.320]

    Между этим типом межслоевого захвата и образованием клатратных соединений можно установить различие. В клатратных соединениях клетка полностью закрыта, и она не может сильно изменяться по форме, хотя и происходит небольшое приспособление клеток по форме и размерам к включаемым молекулам. В таких стр уктурах пространство, предназначенное для включаемой молекулы, ограничено очень узкими пределами, а это, в свою очередь, сильно ограничивает возможный состав включений и состав структуры в целом. Однако известны и слоистые структуры, в которых слои захватывают другие молекулы так, что создается впечатление об образовании клатратного соединения. Макромолекулярные слои подобны молекулам с конечными размерами, возможное смещение которых должно быть ограничено только ван-дер-ваальсовым взаимодействием. Но в молекулярных соединениях такой формы эти смещения малы, и имеются дополнительные структурные факторы, делающие захват более эффективным по сравнению с межплоскостным захватом в графите. [c.427]

    Соединения, макромолекулярная цепь которых состоит из звеньев 81—Н—81, где К — двухфункциональный углеводородный радикал, в частности СНг— или —СеН4—. Такого рода макромолекулы [c.201]

    При обычной температуре элементарный углерод весьма инертен. При высоких же температурах он непосредственно взаимодействует с многими металлами и неметаллами. Углерод проявляет восстановительные свойства, что широко используется в металлургии. Окислительные свойства углерода выражены слабо. Вследствие различия в структуре алмаз, графит и карбин по-разному ведут себя в химических реакциях. Для графита характерны реакции образования кристаллических соединений, в которых макромолекулярные слои С200 играют роль самостоятельных радикалов. [c.394]

    Для синтетического получения органических полимеров обычно используются два метода — метод полимеризации и метод поликонденсации. Полимеризацией называется реакция соединения молекул мономера с образованием макромолекулярных цепей, звенья которых имеют тот же элементарный состав, что и молекулы исходного мономера, причем не происходит выделения каких-либо побочных продуктов. Поликонденсоцией называется реакция взаимодействия низкомолекулярных соединений, приводящая к образова- [c.371]

    В заключение упомянем еще два метода определения молекулярного веса, которые также основаны на уравнении (55.5), но практически (так же как непосредственное измерение осмотического давления) применяются только для растворов макромолекулярных соединений. Первым из них является рассмотренное в 54 седиментационное равновесие в ультрацентрифуге. Этот метод, как было упомянуто, не имеет пока большого значения. Второй метод использует измерення рассеяния света растворами. Общие основы теории изложены в более подробных работах по статистической термодинамике, в то время как применение к растворам макромолекулярных соединений следует искать в специальной литературе. [c.291]

    К твердым атомных веществам относится огромное количество органических и неорганических полимеров, такие простые твердые вещества, как алмаз, кремний и другие неметаллы и металлы, а также твердые ионные соединения. Объединяющим показателем для них является то, гго эти вещества построены посредством межатомных связей. В отличие от молекулярных твердых соединений, которые всегда имеют кристаллическую структуру, атомные твердые вещества могут обладать как кристаллической, так и аморфной структурой. Металлы и ионные соединения характеризуются кристагшической структурой и в обычных условиях не образуют аморфных тел. Для полимерных материалов характерно пребывание в аморфном состоянии. Главным структурообразующим фактором для полимеров служат ковалентные связи, образующие одно-, двух- или трехмерные остовы -макромолекулярные части структуры полимерного материала. При помощи дополнительного структурообразующего фактора - ван-дер-ваальсовых и [c.108]

    Анализ наиболее вероятных комбинаций элементов исследуемой системы (элементарный состав хлорных, азотных соединений, кислорода, углерода, предельных и ароматических углеводородов и др.) позволил сделать следующий вывод. Периодическая группа пиков свидетельствует о наличии фрагментов 5 (60 а.е.м.) в составе мегаллоорганических макромолекулярных соединений, [c.30]

    В процессе реакции роста моЕЮмер внедряется между карб-анионом и противоиоиом. Обрыв макромолекулярной цепи, как и при катионной полимеризации, происходит путем передачи кинетической цепи через растворитель или через мономер. Соединение двух макроионов в случае анионной полимеризации невозможно, поэтому скорость процесса пропорциональна концентрации катализатора. [c.141]

    Эти немногочисленные примеры показывают, какое значение имеют реакции полимераналогов для выяснения строения макромолекулы синтетических (и природных) высокомолекулярны.х соединений, а также для получения новых макромолекулярных веществ. [c.950]

    Макромолекулы полимерных соединений представляют собой совокупность элементарных звеньев одинакового химического состава и строения, соединенных между собой ковалентными связями. В большинстве случаев для соединения друг с другом атомов, составляющих макромолекулярную цепь, затрачиваются две валентности. Если атомы, входящие в состав цепи,, имеют большее число валентных связей, то оставшимися валентными связями они соединены с водородными атомами или с какими-либо замещающими их группами. В некоторых случаях оставтииеся валентности могут быть затрачены на соединение отдельных макромолекулярных цепей друг с другом. [c.21]

    Оби1ая кривая распределения полимера по молекулярному весу имеет два максимума, что характерно для привитых сополимеров, полученных путем полимеризации, инициированной макромолекулярными соединениями, которые, разрушаясь, обра-зуют полимакрорадикалы и низкомолекулярные радикалы. [c.190]

    Для туго смотанных клубков макромолекул, содержащих незначительное количество заключенного в ггих растворителя, у приближается к 0,5. Для разрыхленных макромолекулярных клубков, внутри которых находится большое количество растворителя, величина а приближается к 1. Таким образом, для подавляющего большинства реальных растворов полимерных соединений показатель а колеблется от 0,5 до 1,0, Величина а. позволяет судить о степени гибкости макромолекул полимера в данном рас- [c.78]

    Катализатор образует комплексное соединение с мономером или с присутствующими добавками воды, галоидоводородных кислот и других веществ. Комплексное соединение диссоциирует иа ионы. Обычно катион начинает макромолекулярную цепь, гогда как йннон находится вблизи концевой группы макроиона, образуя с ним ионную пару. [c.135]

    Любые химические превращения полимерных соединений имеют много общего с реакциями низкомолекулярных соединений, содержащих те же функциональные группы. Однако вследствие макромолекулярной структуры полимерных веществ химические превращения их отличаются определенным своеобразием. Первая особенность заключается в легкости термической и окислительной деструкции макромолекул полимеров. Эти явления сопровождаются уменьшением молекулярного веса полимера и образованием 1ЮВЫХ функциональных групп в отдельных звеньях цепей. Окис-1ительная деструкция становится более интенсивной, если полимер находится в растворе (особенно при нагревании такого раствора), поскольку доступ кислорода к отдельным макромолеку-. 1ам в этом случае облегчается. Поэтому химические превращения полимеров следует проводить только при возможно более низкой температуре и возможно быстрее, чтобы уменьшить термическую п окислительную деструкцию цепей макромолекул. Окислительная деструкция,, протекающая в большей или меньшей степени мри любых химических превращениях полимеров, изменяет структуру некоторых звеньев макромолекул. Выделить из состава полимера отдельные продукты окислительной деструкции невозможно, так как они соединены ковалентными связями с соседними звеньями макромолекул. [c.170]

    Высокая стойкость полисилоксанов к действию окислителей при высоких температурах объясняется прочностью силоксановых связей. Под влиянием повышенной температуры и кислорода происходит не разрыв макромолекулярных цепей, а отщепление углеводородных радикалов с образованием летучих низкомолекулярных органических веществ и соединение образовавшихся макрорадикалов. Укрупнение макромолекул затрудняет дальнейшую диффузию кислорода в глубь полимера, вследствие чего процесс деструкции замедляется. Термическая стойкость полиорга-носилокоаиов убывает в зависимости от характера замещающих радикалов, связанных с атомами кремния, в следующем порядке  [c.485]

    Характерной особенностью тех твердых веществ, которые относят к соединениям переменного состава и которые, как мы знаем, представляют собой атомные соединения, является то, что они участвуют в реакциях целыми макромолекулами или макромолекулярными же частями. Отсюда кажущееся невыполнение в этой области химии законов стехиометрии. Это область, где разнооб- [c.175]

    Тиазол — довольно устойчивое соединение. Его группировка является составной частью молекул многих природных веществ (пенициллина, витамина Bi) и лекарственных препаратов (норсульфазола и сульфазола). Полимеры, содержащие в макромолекулярной цепи бензтиазольные кольца (полибензтиазолы) применяются для получения прочных и термостойких пленок, стойких к УФ-излу-чению. [c.366]


Смотреть страницы где упоминается термин Соединения макромолекулярные: [c.245]    [c.40]    [c.282]    [c.32]    [c.237]    [c.257]    [c.390]    [c.117]    [c.136]    [c.378]    [c.397]   
Химико-технические методы исследования Том 1 (0) -- [ c.213 ]




ПОИСК







© 2025 chem21.info Реклама на сайте