Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фруктозо фосфат, образование

    Реакции альдольного присоединения обратимы. Обратный процесс называется альдольным расщеплением (ретроальдольный распад). В условиях организма осуществляются оба процесса, например, альдольная конденсация пировиноградной кислоты и Ы-ацетил-О-маннозамина с получением нейраминовой кислоты (см. 12.1.4) сшивание цепей тропоколлагена с образованием коллагена (см. 11.3) альдольное расщепление серина на глицин и формальдегид (см. 11.1.5) и 1,6-дифосфата D-фруктозы на фосфат дигидроксиацетона и 3-фосфат D-глицеринового альдегида (см, 12.1,5),  [c.192]


    Обмен сахарозы у животных начинается с того, что под действием сахаразы (инвертазы) происходит гидролиз дисахарида на фруктозу и глюкозу [уравнение (12-9), реакция а]. Этот фермент обнаружен также в высших растениях и грибах. Расщепление сахарозы сахарозофосфорилазой [уравнение (12-9), реакция б], имеющее место у некоторых бактерий, приводит к образованию активированного глюкозо-1-фосфата, который далее может непосредственно использоваться в качестве субстрата в процессах катаболизма. Расщепление сахарозы для обеспечения биосинтетических процессов происходит согласно реакции в в уравнении (12-9), в ходе которой образуется (в один этап) UDP-глюкоза. [c.530]

    В печени имеется другой фермент, называемый фруктокиназой, который катализирует перенос фосфата от АТР на фруктозу с образованием фруктозо-1-фосфата. Фруктокиназа обнаружена также в почках и кишечнике. Этот фермент не катализирует фосфорилирование глюкозы, на его активность (в отличие от активности глюкокиназы) не влияют ни голодание, ни инсулин это позволяет понять, почему у больных диабетом выведение фруктозы из крови происходит с нормальной скоростью. Значение К фруктокиназы печени для фруктозы очень мало, что указывает на чрезвычайно высокое сродство фермента к данному субстрату. Образование фруктозо-1-фосфата является, по-видимому, главным путем фосфорилирования фруктозы. При отсутствии в печени фруктокиназы наблюдается идиопатическая фруктозурия. [c.207]

    В начале этой главы мы уже говорили о превращении глюкозы в этанол и диоксид углерода (рис. 18-1). Одна из основных стадий этого процесса состоит в расщеплении фруктозо-1,6-дифосфата на фосфодиоксиацетон и глицеральдегид-З-фосфат. Данная реакция обратима и при участии соответствующих ферментов может привести к образованию фруктозо-1,6-дифосфата. [c.74]

    АЛЬДОЛАЗЫ, ферменты класса лиаз. Содержатся в микроорганизмах, грибах, высших растениях, разл. тканях млекопитающих. Катализируют конденсацию альдегидов с образованием новой углерод-углеродной спязи, Напб. и.ту-чена В-фруктозо-1,6-дифосфат-В глицеральдеги.ч-З-фосфат-лиаза, для к-рой мол. м. 147 000—180 ООО, оптим. каталитич. активность при pH 7,5—8,5 состоит из двух субъединиц. Катализирует р-цию фруктозодифосфат 3-фосфоглице-риновый альдегид -)- фосфодиоксиацетон. Р-цпи, катализируемые А.,— важный этап анаэробного превращ, углеводов при гликолизе и брожении. [c.27]

    Образование В-глюкозамин-6-фосфата происходит при взаимодействии фруктозо-6-фосфата с глутамином [уравнение (12-4)]. [c.526]


    Таким образом, растения при фотосинтезе запасают энергию и связывают углерод в виде D-фруктозо-б-фосфата, из которого затем синтезируют сахарозу и крахмал. Сахароза хорошо растворяется в воде и транспортируется в различные части растения, крахмал используется в качестве резервного полисахарида. Сахароза и крахмал легко гидролизуются, образующиеся при этом D-глюкоза и D-фруктоза служат исходньпки материалами для биосинтеза других моно-, олиго- и полисахаридов. D-Глюкоза и D-фруктоза подвергаются также расщеплению и окислению с выделением необходимой для жизнедеятельности растения энергии и образованием промежуточных соединений для последующего биосинтеза (ацетилкофермент А, D-эpитpoзo-4-фo фaт, фосфоенолпировиноградная кислота, рибозо-5-фосфат). На основе этих веществ растения синтезируют многочисленные представители различных классов соединений (лигнины, липиды, таннины, нуклеотиды, нуклеиновые кислоты, аминокислоты, терпены, пигменты, алкалоиды, фитогормоны и т.д.). Растительная биомасса является обширным возобновляемым сырьевым источником для производства различных органических материалов и соединений. [c.341]

    Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюко- [c.340]

    Фруктозо-6-фосфат, как и другие производные фруктозы, может (см. гл. 3) претерпевать ретроальдольное расщепление с образованием трехуглеродных фрагментов — производных триоз. Именно необходимость получения изомерных фрагментов, легко превращаемых друг в друга (что дает существенную экономию количеств ферментов, необходимых для последующих стадий), предопределяет превращение всех исходных субстратов в производное кетозы. [c.368]

    Однако превращение фруктозы в глюкозу может осуществляться с большой скоростью (в печени и мышцах) и при участии другой более сложной ферментной системы (фруктокиназы, фосфорилирующей фруктозу с образованием фруктозо-1-фосфата). [c.256]

    Хотя равновесие реакции сильно сдвинуто в сторону расщепления сахарозы, вполне осуществима обратная реакция — перенос а-глюко-зильного остатка от глюкозо-1-фосфата на фруктозу с образованием сахарозы. Таким путем Дудоровым и Хассидом впервые была получена энзиматическим синтезом кристаллическая сахароза [61]. [c.45]

    Образование сложного эфира сахара с фосфорной кислотой сопровождается переходом АТФ в АДФ. Сначала образуется глю-козо-6-фосфат, затем фруктозо-1,6-дифосфат. Фосфорилирова-ние в этом процессе снижает энергию активации системы и тем самым активизирует вещество, подлежащее окислению. [c.261]

    Если UDPG непосредственно реагирует с фруктозо-6-фос-фатом по 8к2-пути, то в результате должен образоваться не сахарозофосфат, а ее эпимер — глюкозо фруктозо-6-фос-фат. Чтобы объяснить образование а-глюкозида, необходимо допустить возможность осуществления двухступенчатого процесса, при котором обе стадии протекают с обращением конфигурации. Полагают, что UDPG (а-глюкозид) переносит свою глюкозильную группу на фермент (реакция алкилирования) с образованием р-глюкозилфермента, который далее алкилирует фруктозо-6-фосфат, вновь давая а-глюкозильную группу. Можно видеть, что в этом процессе фермент действует не просто как матрица для организации близкого расположения реагентов, а играет в превращении активную химическую роль. [c.326]

    Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О. Варбургу, Ф. Липману, Ф. Дикенсу и В.А. Энгельгарду. Расхождение путей окисления углеводов—классического (цикл трикарбоновых кислот, или цикл Кребса) и пентозофосфатного—начинается со стадии образования гексозомонофосфата. Если глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, который фосфорилируется второй раз и превращается во фруктозо-1,6-бисфосфат, то в этом случае дальнейший распад углеводов происходит по обычному гликолитическому пути с образованием пировиноградной кислоты, которая, окисляясь до ацетил-КоА, затем сгорает в цикле Кребса. [c.353]

    При образовании полисахаридов в клетках млекопитающих из фруктозы образуется фруктозо-6-фосфат, затем глюкозамин-6-фосфат и в конечном итоге — К -ацетилман-нозамин, иОР-Ы-ацетилглюкозамин, иОР-Ы-ацетилгалак-тозамин. Производные моносахаридов активно участвуют в метаболизме живой клетки, стимулируя процессы фотосинтеза, обеспечения клетки энергией, детоксикации и вывода ядовитых веществ, биосинтеза ароматических соединений, в том числе и аминокислот тирозина и фенилаланина, образования сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот). [c.127]

    Расщепление фруктозо-1,6-дифосфата на две фосфотриозы катализирует альдолаза (КФ 4.1.2.13). При этом образуется глицеральдегид-3-фосфат и диоксиацетонфосфат. Альдолаза мышц не требует для проявления ферментативной активности ионов металлов или каких-либо кофакторов. При исследовании превращения фруктозо-1,6-дифосфата в качестве источника альдолазы используют диализованные экстракты мышц. В процессе диализа из экстракта удаляются компоненты адени-ловой системы НАД и неорганический фосфат, в отсутствие которых становится невозможным дальнейшее превращение глицеральдегид-З-фосфата под влиянием глицеральдегид-З-фосфатдегидрогеназы. Альдолаза относительно термостабильна. Ферментативное расщепление фруктозо-1,6-дифосфата обратимо, положение равновесия с повышением температуры смещается в сторону образования фосфотриоз, константа равновесия при этом возрастает. [c.63]


    Цель задачи заключается в изучении регуляторных свойств фруктозо-1,6-дифосфатазы печени крысы как фермента-участника субстратного цикла. Фруктозо-1,6-дифосфатаза (D-фруктозо-1,6-дифосфат-1-фосфогидролаза, КФ 3.1.3.11) катализирует реакцию гидролиза фруктозо-1,6-дифосфата с образованием фруктозо-6-фосфата  [c.354]

    Фруктозо-6-фосфат образуется в результате необратимого гидролиза фруктозо-1,б-дифосфата. Глюкозо-6-фосфат дефосфорилируется с образованием глюкозы или превращ в глюкозо-1-фосфат-ключевое промежут. соед. в синтезе углеводов. [c.590]

    Многие исследователи работали над вопросами спиртового брожения. Л. А. Иванов впервые установил в 1903 г. участие фосфорной кислоты в процессах брожения и показал, что стимулирующее действие фосфата сводится к тому, что образуется промежуточное соединение фосфорной кислоты (фосфорные эфиры), способное к дальнейшим превращениям. Этот процесс, получивший название фосфорилирования, является промежуточной стадией брожения. Кроме того, в присутствии неорганических соединений фосфора скорость брожения быстро возрастает. В дальнейшем было установлено, что независимо от того, какой гексозный сахар был взят для брожения, в результате фосфорилирования образуется дифосфат фруктозы. Роль фосфора в этих процессах изучали также английские ученые А. Гарден и Т. Юнг (1905). Они разработали схему спиртового брожения, включающую образование фосфорных эфиров. А. И. Лебедев (1881 — 1938) открыл многие основные этапы спиртового брожения, используя дрожжевой сок, полученный по его методу. Для разделения смеси ферментов А. И. Лебедев применял ультрафильтрацию через желатиновые фильтры. Он совершенно верно определил роль кофермента как передатчика водорода при процессах брожения. В настоящее время установлено, что коферменты состоят из комплекса различных веществ. В результате своих исследований [c.534]

    В этом случае также было обнаружено образование альдо- и кетопентоз [60]. Для объяснения реакции образования пентоз из гексоз предполагалась также схема [61], по которой О-фруктоза-1,6-фосфат расщепляется альдолазой и дает диоксипропанонфос-фат и D-глицерозо-З-фосфат. Если заменить в этой схеме триозу на гликолевый альдегид, тот же фермент может из-за обратимости реакции синтезировать >-ксилозу. Возможны также реакции окисления производного )-глюкозы и декарбоксилирования полученной уроновой кислоты до ксилозы [62]. [c.333]

    Эта реакция ингибируется глюкозой. Образовавшийся фруктозо-6-фос-фат либо превращается в глюкозу через стадии образования глюкозо-6-фосфата и последующего отщепления фосфорной кислоты (рис. 10.4), либо подвергается дальнейшим превращениям. Из фруктозо-6-фосфата под влиянием 6-фосфофруктокпназы и АТФ образуется фруктозо-1,6-бисфос-фат  [c.335]

    Транскетолазная реакция в пентозном цикле встречается дважды, второй раз —при образовании фруктозо-6-фосфата и триозофосфата в результате взаимодействия второй молекулы ксилулозо-5-фосфата с эритро-зо-4-фосфатом  [c.356]

    Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь фруктоза способна фосфорилироваться при участии более специфического фермента—фруктокиназы. В результате образуется фруктозо-Ьфосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-Ьфосфат под действием альдолазы расщепляется на две триозы диоксиацетонфосфат и глицеральдегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-З-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты. [c.555]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]

    Образование фруктозо-6-фосфата из фруктозо-1,6-дифосфата осуществляется при действии фруктозодифосфатазы, образование глюкозы из глюкозо-б-фосфата катализируется глюкозо-6-фосфатазой. Остальные стадии синтеза протекают как обращенные реакции гликолиза за счет смещения равновесия (см. рис. 3.8.1). [c.701]

    Остановимся теперь на функциях последнего этапа пути. Как механизм, обеспечивающий полную деградацию углеводов, этот путь не получил универсального распространения, хотя есть эубактерии, осуществляющие разложение углеводов в аэробных условиях только по окислительному пентозофосфатному пути. У многих организмов, использующих пентозы в качестве субстратов брожения, окислительный пентозофосфатный путь служит для превращения пентоз в гексозы, которые затем сбраживаются в гликолитическом пути. Кроме того, выще мы упоминали о двух точках пересечения этого пути с гликолизом на этапах образования 3-ФГА и фруктозо-6-фосфата. Все это говорит о тесном контакте окислительного пентозофосфатного пути с гликолизом и о возможном переключении с одного пути на другой. Наконец, помимо пентоз, образующихся на начальных этапах пути, возникновение С4- и С7-сахаров в транскетолазной и трансальдолазной реакциях также представляет определенный интерес для клетки, так как эти сахара являются исходными субстратами для синтеза ряда важных клеточных метаболитов. [c.257]

    В переключении пентозного пути и гликолиза друг на друга роль регулятора выполняет эритрозо-4-фосфат. Если пентозофосфатов много, то эритро-зо-4-фосфат участвует в транскетолазной реакции, приводящей к образованию фруктозо-6-фосфата и его альдоизомера глюкозо-6-фосфата. Если же много гексозофосфатов, то эритрозо-4-фосфат вступает в трансальдолазную реакцию, пополняющую пул седогептулозо-7-фосфата. [c.259]

    Важную роль в регуляции глюконеогенеза играет другой регуляторный фермент — фруктозо-1,6-дифосфатаза, ингибитором которой является АМФ. Таким образом, при высоком отношении АТФ/АМФ происходит активация глюконеогенеза и ингибирование гликолиза, так как АТФ является ингибитором фермента фосфофруктокииазы, катализирующей обратную реакцию, т. е. образование из фруктозо-6-фосфата фруктозо-1,6-дифосфата. [c.276]


Смотреть страницы где упоминается термин Фруктозо фосфат, образование: [c.285]    [c.112]    [c.446]    [c.457]    [c.324]    [c.237]    [c.464]    [c.64]    [c.119]    [c.482]    [c.513]    [c.521]    [c.527]    [c.93]    [c.90]    [c.700]    [c.257]    [c.397]    [c.374]    [c.113]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.2 (0) -- [ c.63 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Фруктоза

Фруктоза Л Фруктоза

Фруктоза фосфаты

Фруктозаны



© 2025 chem21.info Реклама на сайте