Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец экстракция

    Электролизом водных растворов солей получают (электро-экстракция) и очищают (электрорафинирование) медь, цинк, марганец, кадмий, никель и другие металлы. Такое производство тяжелых и цветных металлов получило общее наименование гидрометаллургии. [c.251]

    Для определения натрия (и других элементов) в ферритах железо—марганец—цинк или железо—марганец—магний использовали пламенный фотометр ФПЛ-1. Изучено влияние железа, марганца, цинка и магния на эмиссию натрия. Железо отделяли экстракцией хлоридного комплекса 30%-ныМ раствором трибутилфосфата в диэтиловом эфире. Цинк и магний не влияют на определение натрия, марганец вводят в эталонные растворы [438]. [c.168]


    Чистый марганец получают из очень чистой МпОг восстановлением водородом под высоким давлением. Слитки марганца получают зонной плавкой, при этом достигается эффективная очистка от примесей [191]. Относительно чистый марганец может быть получен при электролизе водного раствора соли марганца с использованием ртутного катода [567]. Полученный таким способом марганец представляет собой тонкий порошок, который легко окисляется и часто бывает пирофорным. Для повышения степени очистки и упрощения технологического процесса марганцевые растворы очищают от примесей Ре, Со, N1, Си экстракцией марганцевыми солями жирных кислот фракций С7—С1в [48]. Примеси переходят в органический слой, а очищенный марганцевый раствор подвергают электролизу. Степень чистоты марганцевых растворов составляет 99,99%. [c.10]

    Марганец отделяют экстракцией в виде комплекса с диэтилдитиокарбаматом и определяют после окисления до [1083]. [c.386]

    Молибден и марганец титруются вместе с рением и мешают его определению [752]. Для отделения рения от этих элементов последние осаждают в виде гидроокисей. Практически полное отделение рения достигается экстракцией ацетоном. [c.148]

    При экстракции четыреххлористым углеродом из растворов с pH 10, содержащих комплексон Н1 и диэтилдитиокарбаминат, в неводный слой переходят катионы меди, ртути и висмута, а в водном растворе остаются кобальт, никель, марганец, железо, цинк и др. Далее устанавливают pH 4 и повторяют экстракцию при этом в органический растворитель переходят весь кобальт, железо и частично никель и марганец. Последние три катиона вытесняют из неводного раствора, прибавляя к водному раствору ацетат ртути (диэтилдитиокарбаминат ртути значительно устойчивее аналогичных соединений железа, никеля и меди, но менее устойчив, чем диэтилдитиокарбаминат трехвалентного кобальта). Для отделения кобальта от больших количеств железа лучше маскировать последнее пирокатехином при pH 10, а затем очищать экстракт от следов железа ацетатом ртути. При определении кобальта в присутствии больших количеств меди последнюю экстрагируют из раствора с pH 10, содержащего комплексон Н1 и диэтилдитиокарбаминат натрия после этого снижают pH до 4 и экстрагируют кобальт. [c.151]

    Аммонийная соль нитрозофенилгидроксиламина (купферон), Купферонат серебра малорастворим в хлороформе поэтому экстрагируются только следы серебра. Также незначительно экстрагируются марганец, никель, цинк и кадмий, а щелочноземельные металлы и уран(У1) полностью остаются в водном растворе вместе с серебром. Т1(1У), гг(1У), У(У), Ре(1П), Мо(У1), Рс1(П), 8Ь(П1) практически полностью экстрагируются хлороформом из сильнокислых растворов, содержащих купферон. Для других элементов определены pH 50%-ной экстракции (рН,д) В1 — 0,4, Оа 0,3, Си 0,03, ТЬ 0,2, Зс 0,2, Т1(1П) 0,5, 1п 0,5, Н (И) 0,85, РЬ 2,06, Ве 2,07, У 2,9, Со 3,18, 1 а 3,4 и А1 3,51 [1522]. Приведенные данные были получены при извлечении металлов из водных растворов, содержащих 10 — 10 г-ион металла и 5-10 — 5-10 моль/л купферона. [c.155]


    При экстракции купферонатов в органическую фазу попадают также некоторые другие металлы, в том числе железо, олово, ванадий, уран, молибден, цирконий и гафний в водной фазе остаются алюминий, магний, бериллий, марганец, никель, цинк и хром. [c.18]

    Марганец мешает определению, поскольку он осаждается с гидроокисью магния, подавляя впоследствии окраску комплекса магния с солохром цианином Н 200. При анализе проб, содержащих более 0,05% марганца, титан отделяют экстракцией купфероната титана хлороформом, затем перед осаждением гидроокиси магния отделяют марганец в виде перманганата цинка, добавляя окись цинка. Такая модификация метода дает возможность анализировать пробы, содержащие до 1 % марганца. Допускается также присутствие до 10% алюминия и 5% хрома. [c.53]

    Селективность фотометрического определения никеля с помощью ПАН-2 повышают [175] экстракцией 5%-ным раствором амберлита ХЕ-204 в ксилоле ионов железа(111) (2—10 М. НС1), цинка (2—6AI НС1), меди (6 М НС1) и кобальта (8 М НС1). Двумя последовательными экстракциями из раствора 8 М НС1 можно количественно отделить 5—15 мкг никеля от 5—20 мг кобальта. Определению не I мешают хром(111) и марганец. Метод применен для определения i никеля в кобальте. [c.149]

    Полученный осадок Мп (ДДК)з экстрагировали различными органическими растворителями при исходном pH от 3 до 9. Экстрагент брали в недостаточном количестве, чтобы выявить лучший. Содержание марганца в экстракте определяли но интенсивности окраски, пользуясь калибровочной кривой. Результаты представлены на рис. 1, из которого следует, что экстракция лучше всего протекает при pH 6—8. Смесь четыреххлористого углерода с изоамиловым спиртом извлекает марганец одинаково хорошо при любых изученных значениях pH водного раствора каждый из этих растворителей в отдельности экстрагирует плохо. Наиболее полную экстракцию обеспечивает амилацетат. [c.183]

    Методом радиоактивных индикаторов было установлено [175], что наиболее полное отделение ванадия от ряда сопутствующих элементов (железо, алюминий, хром, марганец, кобальт и никель) осуществляется экстракцией его из водного раствора фторида натрия 0,3% раствором 8-оксихинолина в изобутиловом эфире при рН = 3,5- 4,5. [c.95]

    Марганец. Изучено влияние хлорида калия (3 М КС1) на экстракцию марганца (II) 0,01 М растворами оксихинолина в хлороформе и изоамиловом спирте при pH 5—9. Данные по экстракции хлороформом плохо воспроизводились и здесь не приводятся  [c.55]

    Если не отделять мешающие элементы и марганец экстракцией, то для ни-аелирования влияния железа и марганца вводят раствор 713 г нитрата алюминия в 1 л воды. Навеску руды растворяют в НС1, раствор упаривают с серной кислотой, разбавляют до 30 мл, фильтруют, и фильтрат смешивают с 10 мл раствора витрата алюминия и фотометрируют. [c.160]

    Вытеснять данный элемент из его внутрикомплексного соедине ПИЯ способны только те элементы, которые стоят левее в этом ряду [226]. Это свойство было использовано для отделения марганца от сопутствующих элементов при определении его в титане [638], никелевых сплавах [952]. Производят экстракцию ряда элементов в виде диэтилдитиокарбаминатов, и затем марганец вытесняют в водную фазу путем встряхивания экстракта с водным раствором цинка. Использовалась [847] так называемая вытеснительная субстехиометрия для выделения марганца из его диэтилдитиокарбаминатного комплекса с помощью растворов Hg(II), взятой в субстехиометрическом количестве [c.121]

    Экстракция оксихинолината марганца Мп(С9НбОХ)2 осуществляется хлороформом [604, 1002, 1263, 1447, 1496, 1497], четыреххлористым углеродом, бензолом [196], изоамиловым спиртом [228]. Марганец количественно экстрагируется из водной фазы 0,1 М раствором оксихинолина в хлороформе при pH 6,5—11. Уменьшение концентрации реагента в 10 раз сдвигает pH начала экстракции оксихинолината Мп (II). При более высоком значении pH оксихинолинат Мп(П) окисляется кислородом воздуха до оксихинолината Мп(1П). Для предотвращения окисления Мп(И) вводят солянокислый гидроксиламин [239, 1447]. Изучено влияние различных комплексообразователей на экстракцию оксихинолината Мп(П) хлороформом [1002, 1447] (рис. 30). Метод экстракции оксихинолината Мп(И) хлороформом нашел широкое применение для отделения и определения содержания марганца различными методами (фотометрии, нейтронной активации, пламенной фотометрии) в разных объектах [344, 684, 832, 904, 1002, 1014, 1253, 1263, 1473, 1496, 1497]. При помощи экстракции окси-хинолинатов можно разделить Ге(1П), А1(1П) и Мп(П) [1263]. Железо экстрагируется хлороформом при pH 2,8, алюминий — при pH 5,6, а марганец — при pH 10. Для отделения марганца от Ха, К, Са и Зг при анализе нефтяных продуктов на содержание марганца методом пламенной-фотометрии применяют экстракцию его оксихинолината хлороформом [903]. Экстракция марганца в виде 8-оксихинолината хлороформом была применена также для определения его в уране и алюминии [1253]. [c.123]


    Экстракция тиооксината марганца хлороформом дает количественное отделение его от 2п, РЬ, V, В1, N1 и Со [682]. Для осуществления селективного разделения Си, 2п, Мп и Ха используется раствор 8-меркантохинолина в толуоле. Медь экстрагируется из 1 НС1, цинк — при pH 2, марганец — при pH 9. Поэтому, сначала экстрагируют толуолом тиооксинаты Си, 2п и Мп при pH 9, натрий остается в растворе. Затем реэкстракцией [c.124]

    Марганец значительно лучше экстрагируется ТБФ из растворов, содержаш их Li l или LiBr, чем из НС1 или НВг (рис. 34) [1266, 1267]. Значения коэффициентов распределения возрастают прп этом в 100 U более раз. Этот метод применяют для отделения марганца от больших количеств железа [955]. Соединения марганца экстрагируют раствором ТБФ в керосине (1 1) или (1 2) при pH 4,5. Железо маскируют цитратом, а для полной очистки от железа реэкстрагируют марганец 6 N НС1. Коэффициенты распределения железа и марганца при экстракции смесью ТБФ и бензола (1 1) пз 4 N НС1 равны соответственно 500 и 0,002 коэффициент разделения 250 000 [370]. [c.127]

    Экстракцией ТБФ в бензоле из 20 iV H2SO4 извлекают 99,7% Nb, марганец при этом остается в водной фазе. При анализе стали проводят экстракционное отделение марганца в виде его роданидного комплекса смесью ТБФ и диэтилового эфира (3 2) [1126]. Fe(III) маскируют фторидом аммония. Р1з экстракта марганец извлекают соляной кислотой. [c.128]

    С помощью 0,3 М раствора тридодециламина в ксилоле разделяют Мп, Fe и Сг. Сначала экстрагируют железо из слабокислого раствора, а затем марганец — из 14 М раствора Li I. В водной фазе остается радиоактивный хром. Реэкстракцию марганца проводят 0,1 N НС1. Лучшими экстрагентами при извлечении из водных растворов пирофосфата Mii(III) являются хлороформные растворы первичных алкиламинов, содержащие 10— 12 атомов углерода в молекуле. На рис. 35 и 36 показаны зависимости экстракции пирофосфата Мп(1П) от pH и концентрации пирофосфат-иона 0,1 М хлороформным раствором н.додецилами-на. Марганец экстрагируется в этом случае в виде комплекса [c.129]

    Из подкисленных серной кислотой растворов KMnOj марганец экстрагируют ТБФ в виде НМПО4 [544, 545]. С увеличением концентрации серной кислоты экстракция марганца 100%-ным ТБФ увеличивается. [c.130]

    Старик и сотр. [210] применили соосаждение плутония с диацетатом уранила для очистки плутония от естественных а-активных радиоэлементов (Ра, ТЬ, На, Ро), содержащихся в урановой смоляной руде, и показали возможность полного отделения от указанных элементов при 2-кратном осаждении. Выделение проводят из 0,1 N азотнокислого раствора. Вначале в этом растворе окисляют плутоний до шестивалентного состояния броматом калия. При окислении плутония марганец, содержащийся в руде, выпадает в осадок в виде перекиси. Это способствует лучшей очистке плутония от радиоэлементов (особенно от протактиния). После отделения осадка перекиси марганца Ри(У1) осаждают с осадком диацетата уранила, при 90°С двойным объемом 45%-ного раствора ЫаСООСНз из раствора 2 N НЫОз. Плотный кристаллический осадок диацетата уранила отделяют декантированием и после промывания растворяют ъ 2 N НЫОз. Эту операцию повторяют. После растворения осадка производят осаждение из восстановительной среды и тем самым отделяют плутоний от урана. Для более тщательного отделения урана авторы работы [210] после коицентрирова ния плутония (соосаждение с гидроокисью) применяли экстракцию ди-этиловым эфиром. [c.280]

    Сходные варианты получили распространение при определений ряда других металлов. Так, методика определения висмута в свинце и свинцовых кабельных сплавах фотометрированием тиомочевинного комплекса включает экстракционное отделение висмута в виде его комплекса с ДДТК [296]. Марганец в присутствии церия фотометрируют в форме перманганата после экстракционного выделения марганца с помощью ДДТК [297]. Фотометрическое определение кобальта с помощью нитрозо-К-соли в металлическом уране включает экстракцию комплекса кобальта с ДДТК [298]. [c.249]

    Еще один любопытный пример возможностей последовательного определения элементов при использовании разных растворителей дает аналитическая химия урана. Известно, что диэтилди-тиокарбаминат уранила очень слабо экстрагируется четыреххлористым углеродом [71]. Проводя экстракцию карбаминатных комплексов четыреххлористым углеродом, можно определять какой-либо тяжелый металл (например, медь или марганец), после чего экстрагировать хлороформом комплекс уранила для его определения. [c.46]

    В присутствии K I экстракцию изученных элементов можно проводить почти столь же успешно, как и в обычных условиях, когда манрокомпонепт отсутствует (следует лишь выбирать не слишком низкие значения pH). Более того, в ряде случаев присутствие КС1 облегчает экстракцию элементов, поскольку расширяет интервал полной экстракции (олово, марганец). Иодид натрия влияет сильнее. [c.57]

    Разработан кулонометрический метод нахождения содержания ванадия в маслах [110]. Исследуемый образец сжигали в кислородной бомбе при высоком давлении и титровали на автоматическом кулонометре постоянного тока. Анализ выполняли за 15—25 мин. При концентрации ванадия (2—5)-10 % требовалось 0,2—0,25 г образца. Анализ на микроэлементы в нефти осложнялся подбором универсальных растворителей, которые могли бы одновременно растворять и нефть, и потенциалоопределяющие ионы. Изучены условия генерации меди (I) из активного медного анода в гальваностатических условиях, установлена область плотностей тока, где обеспечивается ее 100% эффективность. Электрогенерированная медь (I) применена для анализа на ванадий, молибден и марганец в нефтях Татарии [111] при различных условиях (сжигание, экстракция) переведения этих элементов в водную фазу. Проведено также кулонометрическое титрование в тройной смеси бензол—этанол—вода. [c.45]

    В анализе имеют значение только однозамещенные дитизонаты. Дитизонаты марганца и железа практического значения не имеют, так как они образуются в узких пределах в слабощелочных растворах, а в этих условиях марганец и железо окисляются кислородом воздуха до высщих валентных форм, которые с дитизоном не реагируют. Все остальные кислые дитизонаты металлов имеют практическое значение для определения следов металлов в различных объектах. В табл. 14 представлены условия экстракции, окраска и максимумы поглощения дитизонатов некоторых металлов. [c.312]

    И одновалентной меди. Шестивалентный молибден и двух валентная медь в отдельности восстанавливаются в сереб ряном редукторе до пятивалентного молибдена и однова лентной меди при последующем добавлении раствора молиб дата аммония развивается интенсивная синяя окраска Алюминий, трехвалентный хром и свинец не экстраги руются в форме карбаматов при рекомендованных уело ВИЯХ. Марганец экстрагируется не полностью. Трехвалент ное железо, пятивалентный ванадий, никель, кобальт, шестивалентный молибден, двухвалентная медь, цинк и четырехвалентное олово экстрагируются, но полнота экстракции различна для разных металлов и, вероятно, ни в одном случае не протекает количественно. Однако остаточные количества металлов дают небольшую или вообще не дают ошибки при определении кремния. Из обычно встречающихся элементов только ванадий может мешать определению. Ванадий, остающийся в растворе после экстракции, обычно дает поглощение, эквивалентное поглощению [c.47]

    В расплавленном фториде натрия под действием ультрафиолетовых лучей уран дает интенсивную и хорошо воспроизводимую желтую флуоресценцию. Методы, основанные на этой флуоресценции, с успехом используются для определения следов урана в бедных рудах, песках, дшнералах и других материалах. Поскольку железо, медь, хром и марганец понижают интенсивность флуоресценции, уран обычно предварительно отделяют от других компонентов пробы экстракцией нитрата уранила соответствующими органическими растворителями, которые затем удаляют выпариванием. Сухой остаток сплавляют с фторидом натрия п карбонатом калия в золотой чашке. Плав извлекают из чашки, подвер- [c.531]

    Марганец может быть определен в моче после экстракции его в МИБК в виде комплексного соединения с ПДКА. Методика экстракции излагается подробно в соответствующем разделе главы IV (стр. 101). В своей неопубликованной работе автор использовал метод добавок и количественно определял марганец, добавленный в мочу. Необходимо было скорректировать лишь небольшую погрешность, вызванную рассеянием света, для чего применялась не-абсорбируемая линия с длиной волны 2820 А. При использовании прибора модели 303 фирмы Perl in-Elmer этот метод позволяет получить предел обнаружения 0,002 мкг/мл. В случае содержания марганца в концентрациях, больших 0,02 мкг/мл, мочу подавали непосредственно в горелку. [c.162]

    ДЭДТК), затем вытесняют марганец в водную фазу, встряхивая экстракт с водным раствором ацетата цинка (цинк стоит левее марганца в ряду вытеснения). Марганец в водной фазе определяют обычным методом с формальдоксимом, избыток цинка не мешает [518]. Описан [527] косвенный полярографический метод определения серебра в сплавах меди с серебром или с серебром и золотом, включающий экстракцию серебра раствором диэтилдитиокарбамината меди в этилацетате и полярографирование вытесненной меди в водной фазе. Высота полярографической волны меди пропорциональна концентрации серебра. [c.175]


Смотреть страницы где упоминается термин Марганец экстракция: [c.312]    [c.122]    [c.57]    [c.62]    [c.64]    [c.98]    [c.111]    [c.115]    [c.122]    [c.127]    [c.127]    [c.50]    [c.158]    [c.401]    [c.293]    [c.101]    [c.102]    [c.150]   
Фотометрическое определение элементов (1971) -- [ c.230 , c.231 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.112 , c.113 , c.118 ]




ПОИСК







© 2025 chem21.info Реклама на сайте