Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смазочные материалы применение

    К экологическим свойствам относят токсичность (ядовитость) и канцерогенность (биологическая активность, вызывающая раковые заболевания), а также биоаккумуляцию (возможность накопления компонентов смазочного материала в живых организмах, главным образом — в крови и жировых тканях) — свойства, связанные с непосредственной опасностью для живых организмов пожаро- и взрывоопасность, стабильность состава и свойств в условиях хранения, транспортирования и применения, испаряемость, биоразлагаемость свойства, связанные как с экологи- [c.12]


    В справочнике, выпущенном в 1962 г., был обобщен материал по применению и нормам расхода смазочного материала на железнодорожном транспорте. Кроме того, в нем был дан материал по вопросам складского хозяйства и по некоторым другим вопросам, не связанным непосредственно с техникой использования нефтетоплива и смазочных материалов в механизмах подвижного состава и стационарном оборудовании. [c.3]

    Расширение области применения смазочного материала [c.35]

    Величина коэффициента жидкостного трения зависит прежде всего от вязкости (внутреннего трения), смазочного материала, а также от нагрузки, скорости и геометрических параметров узла трения. Коэффициент жидкостного трения составляет величину порядка 0,01 —0,001, т. е. он намного (иногда в сотни раз) меньше коэффициента сухого трения. Этим обеспечивается надежность и экономичность машин и двигателей и этим определяются необходимость и целесообразность применения смазочных масел. [c.143]

    Квалификационные методы испытания, в которых моделируются реальные условия и обстановка использования нефтепродукта, позволяют изучать и фиксировать его поведение в этих условиях. С точки зрения химмотологии эти методы наиболее перспективны. В последнее время они усиленно разрабатываются и успешно применяются. С помощью этих методов теперь проводятся и комплексные испытания отдельных видов топлив, масел и смазок в целях полной оценки их качества. Заключительным этапом исследования возможности применения новых видов горючего или смазочного материала являются длительные эксплуатационные испытания в реальных условиях по специальной программе. [c.104]

    Применение в операциях обработки металлов резанием или снятием стружки чистых природных продуктов типа растительных масел едва ли возможно вследствие экстремально высоких температур данных процессов. Исключение составляет лишь технология смазывания с потерей смазочного материала. [c.211]

    Вследствие сравнительно невысокой антиокислительной и гидролитической стабильности применение растительных и животных жиров ограничивается областями кратковременных (гоночные автомобили) или незначительных по величине нагрузок (гидравлические установки), а также процессами смазывания, где необходима определенная степень разложения смазочного материала (эмульсии для прокатных станов), двигателями и механизмами без системы смазки, когда попадание масла в окружающую среду происходит непосредственно после его использования. В последнем случае преимущества жиров наиболее очевидны. Сюда относится смазывание двухтактных двигателей внутреннего сгорания, цепей и мотопил, трелевочных тросов в лесной промышленности, открытых редукторов, пневматического инструмента. Непосредственное попадание продукта в окружающую среду имеет место и при использовании разделительных средств в процессах формования, а также средств защиты от коррозии. [c.249]


    На чем основано применение вазелина в технике в качестве смазочного материала  [c.141]

    Своеобразная структура кристаллов графита обусловливает его мягкость, на которой основано его применение в качестве смазочного материала. Между трущимися деталями машин графит измельчается в тончайшие чешуйки, устилающие неровности и облегчающие скольжение трущихся поверхностей. От смазочных масел графит выгодно отличается относительной термической и химической стойкостью. [c.199]

    Крупным потребителем графита является керамическая промышленность, изготовляющая из смеси графита с глиной тигли для переплавки металлов ( графитовые тигли ). Из прессованного графита делают газовые рули ракет. В металлургии он используется для обсыпки форм при литье. Ввиду хорошей электропроводности графита из него изготовляют электроды для электрохимических и электрометаллургических процессов. Значительные количества графита идут для изготовления минеральных красок и (в смеси с глиной) карандашей. Интересным применением графита является использование его порошка (отдельно или вместе с машинным маслом) в качестве смазочного материала для трущихся частей механизмов. [c.505]

    Нефтяной гудрон и полугудрон. В зависимости от природы и качеств исходной нефти гудрон и полугудрон также получают различное дальнейшее применение. Остаток мазута из высокосмолистых нефтей (асфальтовый гудрон) является сырьем для получения нефтяного битума. Остаток мазута из масляных нефтей с малым содержанием асфальтово-смолистых веществ употребляется непосредственно или в смеси с другими фракциями как смазочный материал (например, нигрол Л — собственно полугудрон, применяемый без дальнейшей очистки для смазки осей вагонеток и других грубых механизмов). [c.397]

    Совершенно иное — плоско-сетчатое строение имеет графит (см. рис. 1,6). Кристаллы графита сложены из атомов углерода, но силы сцепления между ними неодинаковы. Атомы углерода, лежащие в одной плоскости, соединены прочными ковалентными связями в шестиугольники правильной формы с общими гранями. Таких шестиугольников в одной плоскости много. Расстояние между соседними плоскостями в кристалле графита (0,34 нм) больше расстояния между соседними атомами углерода в одной плоскости (0,1415 нм) в 2,5 раза, вследствие чего связь между атомами углерода в одной плоскости гораздо прочнее, чем связь между атомами углерода, находящимися в различных плоскостях. Поэтому достаточно незначительного усилия, чтобы расщепить графитовый кристалл на отдельные чешуйки. Значительно труднее разрушить связь между атомами углерода в одной плоскости. Отсюда высокая химическая стойкость графита — на него не действуют даже горячие щелочи и кислоты, кроме дымящей азотной кислоты. Графит термостоек. При 3700 °С он начинает возгоняться. Его можно расплавить при 3800—3900 °С под давлением 10,5 МПа. На высокой термостойкости графита основано применение его в качестве смазочного материала в машинах, работающих при высокой температуре. [c.346]

    Применение графита в качестве антифрикционного и смазочного материала основано на специфических свойствах поверхности его кристалла. Графит прочно прилипает к трущимся поверхностям и сильно уменьшает коэффициент трения. Углеграфитные материалы используют для изготовления щеток в скользящих контактах электрических машин, уплотнительных деталей паровых машин, компрессоров, антифрикционных вкладышей для подшипников и лесопильных рам. Графитные смазочные материалы применяют также при обработке металлов — волочении проволоки, штамповке. [c.4]

    Покрытия смазочными материалами можно наносить толстыми слоями таким образом они будут обеспечивать более эффективную защиту, чем масляные покрытия. Толстый слой смазочного материала не допускает попадания частиц пыли на защищаемую металлическую поверхность, как это часто бывает при защите слоями масла. Смазочный материал применяют для долговременной защиты и в жестких климатических условиях. Однако необходимо учитывать, что точка каплепадения смазочных материалов составляет 60° С, что ограничивает их применение. Консервирующий слой должен быть сплошным, равномерным и по возможности иметь одинаковую толщину, составляющую не менее 0,4 мм. На мелкие детали покрытия наносят погружением в нагреваемые ванны. Свежеприготовленную ванну необходимо нагревать не менее 30 мин при температуре 110° С, а для ингибированных масел— до 95° С, чтобы удалить абсорбированную влагу. Рабочая температура должна равняться примерно 70° С. При нанесении двойного слоя первое погружение проводят в ванне температурой S5° С в течение 3—8 мин, второе — после охлаждения изделия до 40° С — в ванне температурой 70° С в течение 1—3 мин. Затем [c.105]

    Наибольшая номенклатура смазочных материалов используется в слаботочных скользящих контактах, применяемых в измерительных цепях. В таких контактах, работающих практически без образования электрической дуги и при отсутствии электрической эрозии, основной функцией смазочного материала является защита рабочих поверхностей контактных элементов от образования непроводящих пленок, а также предотвращение задиров и схватывания поверхностей на электропроводящих площадках контакта. В ряде случаев применение таких смазочных материалов позволяет также повысить виброустойчивость и искробезопасность скользящего контакта. [c.483]


    Высокая производительность этих машин достигается широким применением автоматического и централизованного управления отдельными механизмами и целыми группами основного и вспомогательного оборудования. Стремление сократить потери на трение в узлах машин, простои и затраты на ремонт, вызываемый износом и повреждением поверхностей трения, а также трудность обслуживания многочисленных смазываемых точек, многие из которых расположены в труднодоступных местах, привели к широкому применению на современных металлургических заводах автоматических централизованных систем смазки, обеспечивающих длительную и бесперебойную работу металлургического оборудования при незначительных затратах на обслуживание этих систем. Благодаря применению централизованной смазки для большинства поверхностей трения удается обеспечить регулярную подачу смазочного материала при экономном его расходе, значительно повысить долговечность машин, сократить расход энергии, необходимой для привода машин, и снизить затраты на ремонт, причем расходы на установку централизованных систем смазки быстро окупаются за счет сокращения простоев и расходов на содержание оборудования. Автоматизация управления централизованными системами смазки, обслуживающими большое количество смазываемых точек, обеспечивает надежную и бесперебойную подачу необходимого количества смазочного материала к поверхностям трения. Немногочисленный персонал, обслуживающий эти системы, следит только за их непрерывной работой, добавляет смазочный материал и производит 1 3 [c.3]

    Наиболее совершенная и экономичная смазка металлургических машин достигается при применении наиболее совершенного смазочного оборудования, наличии надлежащих смазочных канавок, при правильном расположении отверстий для подвода и отвода смазки и правильном выборе смазочного материала. [c.14]

    Области применения дисульфида молибдена. МоЗг как смазочный материал может использоваться в различных видах. [c.30]

    Число замен смазочного материала принято равным для подшипников б раз. в год, для редукторов и масляных баков мельниц 4 раза, в случае применения мази два раза в год. Для механизмов, у которых частый ремонт деталей связан с открытием масляных систем, число замен смазочных материалов соответственно увеличено. [c.175]

    Смазочный материал Основа СМ Загуститель и добавки Предел прочности при 20 ° С, Па Удельное электрическое сопротивление при 20 °С, Ом-см Испаряемость при 150 °С за 1 ч, % Темпера- тура примене- ния, °С Область применения [c.484]

    Смазочный материал Фирма-изготовитель Основа СМ Электропроводная добавка Рекомендованная область применения [c.485]

    Наиболее часто используют постоянное напряжение или переменное гармонически изменяющееся напряжение в широком частотном диапазоне (по литературным данным от 500 до 10 Гц). Причем в ряде случаев частота напряжения изменяется в процессе контроля, являясь тестовым воздействием. Использование переменного напряжения имеет ряд преимуществ, среди которых исключение электрической диссоциации смазочного материала в зонах трения, возможность применения бесконтактных токосъемников, упрощение дальнейшего преобразования получаемой измерительной информации и т.п. [c.549]

    Когда требуется создать смазочный материал для двигателя новой конструкции, сначаЛа выявляют предварительные требования к качеству масла, основываясь на имеющемся опыте применения масел в двигателях подобной конструкции и с близкими мощностными и экономическими характеристиками. Ориентировочно выбирают масло, наиболее подходящее по классификации группы, и подвергают это масло краткосрочным стендовым испытаниям на отсеке или на натурном образце нового двигателя. Если в результате испытаний установлены недостаточные эксплуатационные свойства выбранного масла, испытанию подвергают масло более высокой группы. Если при этом общий уровень моторных свойств масла оказывается в основном удовлетворительным, но обнаруживаются отдельные недостатки масла, например по коррозионной активности, решается вопрос о замене противокоррозионного компонента в стандартизованной композиции на более эффективный. Как правило, предварительный этап подбора смазочного материала для нового двигателя на этом завершается. Затем определяют физико-химические и функциональные свойства выбранного масла, проводят краткосрочные и длительные стендовые, а также эксплуатационные испытания масла на двигателе данного типа. В случае положительных результатов этих испытаний масло впись1вают в технические условия на двигатель как гарантирующее его надежную эксплуатацию в течение срока, установленного заводом-изготовителем. [c.215]

    Выбор консистентных смазок в значительной степени облегчается маркировкой нх, так как в обозначениях марок даны основные указания о применении (У — универсальная, Н — низкоплавкая. В — водостойкая, М — морозостойкая и т. п.). Однако этого не всегда достаточно, так как условия работы отдельных механизмов весьма разнообразны. Поэтому, выбирая смазочный материал, надо учитывать и условия работы механизма и физико-химические свойства консистентных смазок. [c.652]

    Применение глицерина весьма многообразно. Он используется в парфюмерной и в ликерно-водочной промышленности, в полиграфии—для предохранения краски от высыхания, в качестве смазочного материала, как теплоноситель и как составная часть незамерзающих жидкостей для охлаждения двигателей и т. д. [c.186]

    Консервационные ПИНС (К) не могут использоваться в большинстве узлов трения (подшипники, редукторы, гидравлические передачи и пр.) в качестве рабочего смазочного материала, а в случае применения для консервации подобных узлов на период хранения или транспортирования требуют последующего их удаления (разборка, промывка), т. е. расконсервации. С наружных поверхностей различных металлоизделий и из скрытых поверхностей и профилей разного сечения ПИНС, естественно, не удаляют, так как они предназначены для защиты от коррозии техники во всех случаях хранения, транспортирования, периодической или постоянной эксплуатации. [c.111]

    В работах, посвященных изучению влияния природы смазочного материала на фреттинг-коррозию, приводятся зачастую противоречивые данные, так как испытания проводятся Ё различных условиях с применением различных показателей для оценки изнашивания. По ГОСТ 23.211-80 , показателем оценки являются среднее значение глубины износа рабочей поверхности и соответствующая ей интенсивность изнашивания. По литературным данным, в качестве показателей оценки наиболее часто используют потерю массы и объемный съем металла П18,24,25,98-ЮОЛ, а так- [c.35]

    Доминирующий вид разрушения металла, величина его коррозионного, водородного и механического факторов могут быть различны в зависимости от типа металлоизделия, условий его применения, состава смазочного материала. [c.69]

    Для повышения уровня качества топлива или смазочного материала, как правило, необходимо затратить какие-то средства. Эти средства вкладываются в новую технологию, или в разработку и введение новых присадок, или в другие мероприятия. Но, естественно, что все эти затраты должны окупиться в дальнейшем при эксплуатации техники, использующей топлива или смазочные материалы с более высоким уровнем качества, т. е. должны увеличиваться сроки службы техники до капитального ремонта, либо уменьшаться расход запасных частей или расход новых топлив и смазочных материалов, либо улучшаться другие показатели. Народное хозяйство в целом должно иметь экономический эффект от перехода на производство и применение нефтепродуктов с более высоким уровнем качества. [c.17]

    Выбор оптимального смазочного материала в условиях современного рынка осложняется обилием ассортимента и наличием нескольких систем классификации и маркировки (API, АСЕА, ССМС, ILS АС, S АЕ, ГОСТ). Затруднения возникают также и в результате применения разнообразной терминологии при описании состава и свойств смазочных материалов. [c.9]

    Примером квалификационного метода, получившего широкое применение во всем мире, является метод оценки противоизносных и противозадирных свойств смазочных материалов на четырехшариковой машине трения. Существует ряд отечественных и зарубежных модификаций этих машин (КТ-2, КТ-4, МАСТ-1, машины фирмы Shell и др..) [9]. Все они предназначены для исследования трения при граничной смазке, для определения критических температур граничного слоя смазки на поверхностях трения, при которой слой смазочного материала разрушается, или для определения критической нагрузки, при которой наступает схватывание (задир, спекание) стальных поверхностей шариков. [c.14]

    Фосфаты кадмия. Фосфат кадмия был также использован как катализатор при заводской полимеризации олефинов [13]. Фосфат кадмия, соответствующий формуле d (POgjg или d (Н2 0 )2, активнее нормального ортофосфата dg (РО )а. Первый из них готовился смешением ортофосфата и ортофосфорной кислоты в количествах, соответствующих формуле d (Р0 )2 + ИдРО . Этот катализатор применялся в гранулированном виде (от 10 до 20 меш), как таковой, или же в смеси с одинаковым объемом гранул пемзы тех же размеров при 200° и давлепии 12 ят для полимеризации фракции G3,—С нефтеперерабатывающих заводов. Катализатор готовился также в виде таблеток размером 3X5 мм при помощи специальной таблетирующей машины с применением 5 % графита как смазочного материала. Истинная кривая разгонки полимера, полученного при 200° и давлении 12 ат из фракции С3—С , не показала никаких площадок, соответствующих чистым углеводородам. Наоборот, полимеры, полученные подобным путем из фракции С при 150°, состояли главным образом из дибутиленов и трибутиленов. [c.200]

    Принципы подбора и применения присадок, а также эффективность их действ ия в маслах во многом зависят от состава самой присадки, степени ее чистоты (отсутствия примесей) химического состава масла, прежде всего от наличия в нем полярных компонентов (смолистых веществ, серо-, азот- и кислородсодер-жаидих продуктов) наличия в маслах присадок другого функционального действ ия, что может привести к синергизму (усилению) или антагонизму (ослаблению) действия добавки концентрации вводимой присадки (как правило, с повышением температуры выкипания масла требуется большее количество присадки) условий применения смазочного материала (тем пературы, удельных нагрузок, скорости и контакта с различными металлами и средами и прежде всего с влагой, воздейств ия облучения, вакуума и т. п.) имеет значение и стоимость присадок, которая обычно в 10—20 раз выше стоимости базовых масел. [c.311]

    Приведенные в начале главы факторы — химический состав, рабочая температура и культура эксплуатации смазочного материала — сами по себе являются абсолютно верными однако на практике не всегда можно строго оценить влияние каждого фактора в отдельности их совокупное влияние на этапе применения проявляется при хранении, транспортировании, перекачке, заправке и эксплуатации на этапе утилизации ОСМ определяющими факторами являются ее цели и методы осуществления. Во всех случаях опасность для человека заключается в первую очередь в попадании смазочных материалов на кожу и вдыхании паров отметим, что в силу своей высокой лиофильности даже без загрязнения воздуха они могут проникать в организм через кожу зафязнение почвы и водоемов происходит вследствие проливов и утечек, в том числе через уплотнительные материалы из смазочных систем машин и механизмов загрязнение атмосферы связано с испаряемостью масел, автомобильными выхлопами и сжиганием ОСМ и продуктов их переработки. Зафязнение объектов окружающей среды чревато биоаккумуляцией экологоопасных соединений, их химическими превращениями (часто непредсказуемыми) и попаданием их в трофические (пищевые) сети с последующими массовыми офавлениями биоты и населения. Столь отдаленные во времени и просфанстве последствия являются наиболее опасными и в наименьшей степени поддающимися прогнозированию и оценке. [c.61]

    В настоящее время, как уже отмечалось выше, в области производства и применения смазочных материалов наметились два направления решения экологических проблем. Первое — создание экологобезопасных продуктов нетоксичных, не загрязняющих окружающую среду и вовлекаемых в круговорот веществ благодаря высокой биоразлагаемости важнейшим качеством вновь разрабатываемых продуктов должна являться также легкость утилизации смазочного материала после окончания его срока службы. Кроме того, решение экологических проблем связано и с оптимизацией сроков службы смазочных материалов и смазываемого оборудования, а также с совершенствованием его конструкции. [c.154]

    В приводах реактивных самолетов, полиэфирные — в основном для смазывания авиационных турбин. Применение быстробиораз-лагаемых СЭ в первую очередь целесообразно в случае вероятности непосредственного воздействия смазочного материала на природные экосистемы и/или организм человека — в строительной, лесной, пищевой, дорожной и других отраслях промышленности, а также в случае однократного использования смазочного материала (например, в двухтактных ДВС). Так, например [172, 309], разработка гравийных карьеров, как правило, осуществляется в условиях непосредственного контакта тяжелой техники с подземными водами. В связи с большими объемами минеральных масел, используемых в гидросистемах машин и механизмов, опасность зафязнения подземных вод в зоне производства работ из-за неизбежных случайных и аварийных проливов масел весьма высока. Поэтому одно из швейцарских предприятий по добыче гравия после тщательного сравнительного анализа различных типов гидравлических масел остановило свой выбор на биологически окисляемом масле на основе насыщенных эфиров. Более высокая стоимость таких масел окупается за счет 3-кратного увеличения срока их службы и отсутствия токсичного воздействия на окружающую среду [172]. [c.207]

    Особую роль класс WGK ифает при хранении и эксплуатации жидкостей. Согласно требованиям VAWS — нормативов эксплуатации установок с использованием опасных для вод жидкостей, выявляют так называемые ступени опасности (табл. 4.16), определяющие стоимость, допустимые объемы применения и контроль за использованием опасных жидкостей. Согласно табл. 4.16, А представляет собой низшую ступень опасности , D — высшую. Для потребителя имеются только две возможности выбрать наиболее экономичную ступень А или экстремально снизить объем потребления жидкости (например, отказ от централизованной циркуляционной установки), или применять СОТС и смазочный материал для станка только класса WGK 0. Последнее наиболее предпочтительно. [c.210]

    Основными техническими преимуществами жиров в сравнении с нефтяными маслами являются лучшие вязкостные и трибологические свойства. Это обстоятельство существенно повышает благоприятность использования жиров с экологических позиций, поскольку в ряде случаев дает возможность офаничить использование химически активных присадок, а иногда и совсем отказаться от их применения. К основным недостаткам жиров следует отнести низкую стабильность и в большинстве случаев плохие низкотемпературные характеристики. Указанные недостатки частично устраняются смешением жиров с нефтяными маслами (неизбежно ухудшая при этом экологические свойства смазочного материала). [c.222]

    Нефтепродукты с высоким содержанием аренов запрещены к применению. Допустимое содержание аренов составляет не более 1% мае. в базовом масле и не более 0,5% мае. в композиции смазочного материала содержание полициклических аренов офаничено величиной 1 млн.  [c.350]

    Для предохранения смазочных материалов и масел от биоразрушений применяют механические, физические и химические методы. К механическим относят методы очистки от примесей и загрязнений, в основном фильтрацию к физическим — гамма-, ультрафиолетовое и тепловое облучение и обезвоживание. Применение последнего ограничено, так как может привести к изменению свойств смазочного материала. [c.92]

    Испаряемость -показатель стабильности состава смазок при хранении и применении зависит гл. обр. от испаряемости масла, к-рая тем выше, чем ниже хим. стабильность смазочного материала, тоньше слой и больше его пов-сть. Количеств, оценка испаряемости смазок основана на измерении потери массы (в %) образца, к-рый выдерживается в стандартньЛс условиях в течение определенного времени при постоянной т-ре, [c.566]

    Основным назначением смазочного масла является обеспечение смазки двигателя, чтобы предупредить износ, образование царапин и заедание рабочих поверхностей двигателя. Смазочную способность масел называют маслянистостью , смазываемостью , прочностью пленки и т. д. Очень мало известно о механизме процесса смазывания, или маслянистости , или прочности пленки , потому что эти свойства крайрю трудно измерить и оценить средствами, применяемыми и используемыми на практике. Однако, очевидно, нефтяные масла обладают этими свойствами в высокой степени, иначе они не получили бы такого повсеместного применения в качестве смазочного материала. [c.218]

    Подшпникя ншраыяюнще. Применение пластмасс для изготовления подшипников и направляющих весьма эффективно вследствие малого износа поверхностей трения, стойкости пластмасс к коррозионным средам, возможности работы з смазочного Материала и амортизирующей способности пластмассовых опор. Однако для достижения эффекта необходимо правильно выбрать материал и разработать конструкцию с учетом всех его свойств. [c.64]

    ПРАКТИЧЕСКАЯ ЦЕППОСТЬ. Разработана технология получения и применения низкозастывающего профилактического смазочного материала Ниогрин-С , 3 , Л из нового вида нефтяного и нефтехимического сырья для предотвращения прилипания, примерзания и смерзания влажных горных пород к металлической поверхности горно-транспортного оборудования при добыче и транспортировке полезных ископаемых и вскрышных пород. Предложено новое решение утилизации отработанных моторных масел путем [c.5]

    Исследования образцов профилактической смазки на основе печного топлива в смеси с мазутом марки 100 показали, что они обладают повышенным содержанием заэмульгированной воды - до 6,0% мае., что не соответствует нормам технических условий на разрабатываемый профилактический смазочный материал. Образцы смазки, приготовленные на базе пиролизной смолы с уст. РИФ-1, проявили пожароопасные свойства и применение их в качестве профилактических смазок весьма опасно. [c.15]

    Для всех смазочн х материалов, работающих в условиях гидродинамического режима, основной характеристикой их является внутреннее трение, определяемое коэффициентом вязкости. Но, как уже достаточно ясно вытекает из целого ряда докладов, зачитанных на данном совещании, и вообще достаточно хорошо известно вязкость коллоидных растворов (рассчитанная по обычным формулам вискозиметрии) не является их физической характеристикой и, не может служить, следовательно, величиной, необходимой для расчетов для гидродинамической теории смазки. И если для коллоидных систем исследование вязкости имеет очень большое значение с точки зрения изучения их строения (образование структуры и ее разрушение), то для применения смазочного материала в качестве такового вязкость в первую очередь имеет значение как механическая характеристика. С этой точки зрения для смазок коллоидной структуры нельзя пользоваться теми величинами, которые могут быть получены методами обычной вискозиметрии. Даже в тех случаях, когда, казалось бы, достаточно жидкая смазка протекает через капилляр с вполне приемлемой скоростью это течение может быть не характерно для поведения данной смазки в смазочной пленке, если смазка обладает так называемой аномальной структурной вязкостью. [c.214]


Смотреть страницы где упоминается термин Смазочные материалы применение: [c.499]    [c.95]    [c.269]    [c.174]   
Технический анализ (1958) -- [ c.127 ]

Технический анализ Издание 2 (1958) -- [ c.127 ]




ПОИСК







© 2025 chem21.info Реклама на сайте