Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие дисперсионное слабое

    Третьей важной особенностью дисперсионных сил является их универсальность. Если для проявления кулоновских сил у взаимодействующих частиц необходимо наличие избыточных электрических зарядов, а для проявления ориентационных сил — наличие постоянного дипольного момента, то для дисперсионных сил подобные ограничения отпадают при достаточно тесном контакте дисперсионное взаимодействие возникает между любыми частицами — одинаковыми или различными, полярными или неполярными и т. п. Оно практически полностью определяет собой взаимное притяжение молекул в веществах с неполярными и со слабо поляризуемыми молекулами. [c.77]


    Полимеры с высоким уровнем межмолекулярного взаимодействия (водородные связи, диполи) удовлетворяют приведенному неравенству уже при значении 200 в случае слабых вторичных сил (дисперсионные силы) — при 500. [c.40]

    Взаимодействие между неполярными молекулами (дисперсионный эффект). Дисперсионные силы возникают в результате смеш,ения электронных оболочек в момент сближения молекул, что приводит к кратковременной и многократной их поляризации. При определенной ориентации и наличии кратковременной поляризации молекулы способны притягиваться друг к другу. Это наиболее распространенный и универсальный вид сил межмолекулярного взаимодействия, К неполярным растворителям относятся пропан, бензол и все другие углеводородные растворители. Толуол также следует отнести к группе неполярных растворителей, так как имеющийся у него небольшой дипольный момент решающей роли не играет. В масляном сырье все углеводороды являются неполярными, за исключением некоторой части ароматических, обладающих слабо выраженной полярностью. [c.70]

    Дисперсионное взаимодействие присуще практически всем молекулам, а в случае неполярных молекул играет решающую роль при их слабых взаимодействиях. Энергия дисперсионного взаимодействия является величиной аддитивной. Таким образом, общая энергия дисперсионного взаимодействия составляющих системы складывается из энергий их парного взаимодействия. Дисперсионные взаимодействия характерны также для микроскопических коллоидных частиц, наблюдаются в системах, содержащих высокомолекулярные полимерные соединения. [c.95]

    К лиофобным коллоидам относятся системы, в которой частицы дисперсной фазы не взаимодействуют или слабо взаимодействуют с дисперсионной средой. Эти растворы получают с затратой энергии, и они устойчивы лишь в присутствии стабилизаторов. [c.294]

    В заключение отметим, что величины дисперсионных эффектов, рассчитанные Левиным [13] на основании модели Друде 0(Не—Ые)=—57 еа%, 0(Не—Аг) =—820 еа1, )(Ые—Аг) = = —1038 еа представляются нам сильно завышенными. Так, из его расчетов следует, что даже в случае взаимодействия наиболее слабо поляризующихся атомов Не и Ые индуцированный диполь практически целиком наведен дисперсионным взаимодействием. Такой результат вряд ли может отражать реальную ситуацию, поскольку для систем с большим числом электронов (Не— Аг и Ые—Аг), где роль дисперсионных эффектов должна быть еще более существенной, анализ [12, 14] контуров индуцированного поглощения [11] указывает на доминирующую роль членов, обусловленных перекрыванием электронных оболочек. [c.101]

    Межмолекулярное взаимодействие более слабое, чем внутримолекулярное. О величине энергии межмолекулярных сил можно получить представление на основании определения теплот испарения жидкостей. Например, молекулы бензола лишены дипольного момента и неспособны к образованию ориентационных или индукционных сил. Теплота испарения бензола, характеризующая энергию дисперсионного взаимодействия, составляет всего 8 ккал моль. [c.156]


    Дисперсионный эффект — это перемешивание молекул газа и абсорбента. Это объясняется тем, что молекулы газа связаны друг с другом настолько слабыми силами межмолеку-лярного взаимодействия, что они способны распределиться между молекулами подобных веществ. Например, парафин растворяется в бензоле потому, что силы межмолекулярного взаимодействия в парафине очень слабы и молекулы бензола, со своей стороны, не препятствуют молекулам парафина распределяться между ними, так как силы межмолекулярного взаимодействия в бензоле тоже невелики. Вместе с тем пара-70 [c.70]

    Относительная величина рассмотренных видов межмолекуляр-ных сил зависит от полярности и от поляризуемости молекул вещества. Чем больше полярность молекул, тем бол зше ориентационные силы. Чем больше деформируемость, чем слабее связаны внешние электроны атомов, т. е. чем эти атомы крупнее, тем значительнее дисперсионные силы. Таким образом, в ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ. Например, в случае НС1 на долю дисперсионных сил приходится 81% всего межмолекулярного взаимодействия, для НВг эта величина составляет 95%, а для HI 99,5%, Индукционные силы почти всегда малы. [c.158]

    Как известно, энергию водородных связей в общем случае можно представить как сумму вкладов электростатического, обменного, поляризационного и дисперсионного взаимодействий [206]. Для органического вещества торфа, содержащего большое число дипольных функциональных групп, существование электростатической составляющей водородной связи в формировании взаимодействия вода — торф вполне очевидно. Наличие в органических соединениях торфа структур полисопряжения, а также ароматических структур с ненасыщенными связями предопределяет возможность реализации слабых водородных связей [207]. Однако на фоне преобладания электростатической составляющей другими составляющими, ответственными за формирование водородных связей в торфе, по-видимому, можно пренебречь. [c.65]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]

    Дисперсионное взаимодействие происходит между молекулами всех, веществ, одинаковыми или различными, полярными или неполярными. Оно практически полностью определяет взаимное притяжение молекул в веществах неполярных, со слабо поляризуемыми молекулами. В табл. 8 указаны сравнительные значения этих трех видов энергии молекулярного взаимодействия для некоторых веществ. [c.88]

    Если частицы обоих видов не содержат полярных групп и не образуют между собой водородных или других достаточно прочных связей (например, при растворении каучука в бензоле или вообще углеводорода в углеводороде), то взаимодействие между частицами в этом случае определяется сравнительно слабыми дисперсионными силами ( 27 ). Эти силы могут преодолеваться тепловым движением молекул растворителя и звеньев цепей [c.599]

    Измерение краевых углов для различных твердых тел позволяет их разделить по отношению к смачивающей жидкости (см. гл. XVII) на две группы — лиофиль-ные и лиофобные (греческие лиос — жидкость, филос — любовь, фобус — ужас, отталкивание). Это относится и к дисперсным системам, для которых характерно интенсивное взаимодействие дисперсионной среды с поверхностью дисперсной фазы — лиофильные системы (это взаимодействие обусловливается образованием развитых сольватных слоев). Системы с очень слабо выраженным взаимодействием дисперсной фазы и дисперсионной среды — лиофобные системы, при смачивании водой — соответственно, гидрофильные, хорошо смачиваемые, и гидрофобные, т. е. плохо смачиваемые. При смачивании водой твердые тела в зависимости от их физико-химической природы, в частности горные породы, проявляют как гидрофильные, так и гидрофобные свойства. Например, кварцит, кальцит и т. д.— гидрофильны, а ископаемые угли, сера, пирит и другие сульфиды — гидрофобны. [c.180]


    Рассмотренные выше среднестатистические модели молекул концентратов ароматических углеводородов и нефтяных остатков (см. с. 18) приняты в качестве исходных при обсуждении физико-химической сущности процессов, протекающих при нагреве различных видов углеводородного сырья. В общем случае в результате слабых и сильных взаимодействий ВМС и НМС и изменения растворяющей силы дисперсионной среды происходит сложный процесс, который может быть расчленен на стадии  [c.157]

    В нефтяной системе при данных условиях углеводородные и неуглеводородные соединения образуют сильно структурированную (надмолекулярные структуры), слабо структурированную (сольватные оболочки) и неструктурированную (дисперсионная среда) части. Между ними устанавливается обратимое динамическое равновесие. Для изменения равновесия (соотношения трех частей сложной структурной единицы) необходимо изменить энергию нефтяной системы. Изменение количества энергии в системе существенным образом сказывается на кинетике протекания стадий слабых и сильных взаимодействий. [c.158]

    Притяжение молекул с постоянным дипольным моментом уменьшается с ростом температуры, поскольку тепловые возмущения вызывают отклонения от идеальной конфигурации — расположения молекулярных диполей вдоль прямой. Температурная зависимость индукционного притяжения выражена очень слабо. При взаимодействии отдельных молекул первое слагаемое в выражении (/) может составлять от О (для неполярных молекул) до —50% и более (для молекул с большим диполь-иым моментом) второе слагаемое обычно не превышает 5— 10%, тогда как на долю третьего, отражающего наиболее универсальное дисперсионное взаимодействие, приходится во многих случаях более половины всей энергии притяжения, вплоть до 100% для неполярных углеводородов. [c.17]

    Фазовые превращения. С изменением температуры алканы подвергаются фазовым превращениям. Это плавление, кристаллизация, переход из одной кристаллической модификации в другую, растворение одной фазы в другой, насыщение или пересыщение одной фазы другой. Они определяются характером сил межмолекулярного взаимодействия. Для длинноцепочечных и слабо разветвленных алканов это аддитивные дисперсионные силы, направленные перпендикулярно оси цепи нормального строения, что обусловливает возможность сближения молекул. [c.190]

    Дисперсная фаза необратимых систем, т. е. систем, сухой остаток которых не способен самопроизвольно диспергироваться, слабо взаимодействует с дисперсионной средой. Такие системы относятся к лиофобным (в случае водной дисперсионной среды — к гидрофобным). Это золи металлов, суспензии оксидов железа и алюминия и др. [c.66]

    При структурировании дисперсные частицы либо непосредственно контактируют друг с другом, вытесняя полностью дисперсионную среду из места контакта и образуя наиболее прочную структуру, в то же время отличающуюся хрупкостью, либо разделены тонкой жидкостной прослойкой, придающей структуре пластичность или эластичность. При увеличении толщины этой прослойки и, как следствие, увеличении расстояния между частицами дисперсной фазы и ослаблении молекулярных сил их взаимодействия прочность структуры снижается, а по достижении некоторого значения она может быть разрушена уже слабыми физическими, например механическими, воздействиями, в частности встряхиванием или перемешиванием. Для многих коагуляционных структур подобное разрушение может быть обратимо, то есть по истечении времени разрушенные структуры восстанавливаются, постепенно приобретая первоначальную прочность. Эта способность разрушенных физическими воздействиями структур самопроизвольно восстанавливаться во времени называется тиксотропией. [c.30]

    Дисперсионное взаимодействие, как правило, вносит наиболее существенный вкл-ад в суммарную энергию взаимодействия в случае проявления дальнодействующих сил. При этом ориентационное взаимодействие значительно только в случае полярных молекул, а индукционное взаимодействие обычно проявляется наиболее слабо. [c.95]

    При депарафинизации применяются неполярные растворители— пропан и узкая бензиновая фракция (нафта), а также полярные растворители — ацетон, метилэтилкетон, дихлорэтан. Неполярные растворители полностью растворяют жидкую часть масла, а полярными растворителями она растворяется слабо. Твердые углеводороды также гораздо лучше рг створяются неполярными растворителями. Чтобы повысить растворяющую способность полярных растворителей, к ним добавляют органические неполярные углеводороды такие полярные растворители, как ацетон, метилэтилкетон, дихлорэтан, используются тoJ[ькo в смеси с бензолом и толуолом или только в смесн с толуолом. Механизм действия бензола и толуола на растворяющую спосоСность полярных растворителей до конца не изучен. Вероятно, молекулы ароматического растворителя под действием полярной группы основного растворителя приобретают некоторый индукционный дипольный момент, происходит ориентационное взаимодействие их с молекулами полярного растворителя, которое ведет к усилении) дипольного момента системы. Одновременно в присутствии бензольного ядра усиливается дисперсионное взаимодействие. [c.327]

    Молекуляр- ная Молекула Вандерваальсовы взаимодействия (дисперсионное, диполь-дипольное), водородная связь Слабая Низкая Диэлект- рики О2, СО2, ВГ2, Н2О, СбНб [c.118]

    Числовые значения ai и Ьг, характерные для каждого атома и каждого типа межмолекулярного взаимодействия, определены [17] с помощью статистической обработки экспериментальных данных по методу наименьших квадратов . Согласно этому методу, изложенному в гл. 1, решается избыточная система уравнений, число неизвестных в которых (в данном случае значений йг и Ь,-) намного меньше числа уравнений. Такая система составляется на основе уравнения (3.9) по данным химического строения и экспериментально определенным температурам стеклования хорошо изученных полимеров. Исследование этой системы позволяет учесть все возможные типы межмолекулярного взаимодействия (помимо слабого дисперсионного взаимодействия, учитываемого коэффициентами а ), оказывающего влияние на температуру стеклования полимеров. При этом нужно стремиться ввести минимальное число различных коэффициентов а и Ь , достаточное, однако, для того, чтобы разность расчетных и экспериментальных температур стеклования составляла не более 5% от экспериментального значения ТИнкременты, позволяющие рассчитывать Тд полимеров разных классов, представлены в табл. 3.1. Там же даны числовые значения этих инкрементов. [c.52]

    Дисперсионные взаимодействия являются слабыми и происходят при растворении неполярного вещества в неполярном растворителе. В этом случае силы межхмолекулярного притяжения малы как ДЛЯ растворенного вещества, так и для растворителя, благодаря чему взаимное диспергирование растворенного вещества и растворителя легко осуществляется вплоть до полного растворения. Поэтому такие растворители могут без труда растворять органические реагенты с неполярными молекулами, равно как и достаточно устойчивые электронейтральные комплексы при условии, что центральный ион лищен своей гидратной оболочки, а молекула лиганда не содержит группы, способной взаимодействовать с молекулами воды (например, в процессах распределения между водой и органическим растворителем). [c.110]

    Прн подборе стационарной фазы для хроматографического анализа решающее значение имеют ее полярность и селективность. Эти ПОНЯТИЯ еще четко не определены и трактуются различно. При подборе стационарных фаз приходится руководствоваться качественными соображениями, основанными на представлениях о характере сил взаимодействия. В последнее время при выборе стационарных фаз чаще начинает использоваться термодинамический подход. Поляр но сть стационарной фазы можно оценить ее снособ но-стью к различным вендам межмолекулярных взаимодействий лове-лич,1[не дифференциальной мольной свободной энергии растворения АС. Полярность фазы необходимо оценивать по ряду веществ,специфичных для различных типов взаимодействий. В настоящее время для оценки дисперсионного взаимодействия широко используется метиленовое звено н-алканов. Значение АО для бензола характеризует способность к образованию я-комплексов, бутанол-1—к образованию водородной связи с электронно-донорными связями стационарной фазы. Пентанон-2 — слабый донор электронов и может применяться для характеристики донорно-акцепторных комплексов. Нитропропаи-1 имеет относительно большой дипольный момент /) = 3,6 Кл-м и может выявить способиость фаз к ориентационному взаимодействию. Одновременно он может с рядом фаз давать и донорно-акцепторные комплексы. [c.303]

    Энтальпия адсорбции при физической адсорбции имеет порядок 10 ккал/моль. Это указывает на низкую энергию взаимодействия между адсорбированными атомами и поверхностью кристалла в большинстве случаев эти взаимодействия осуществляются слабыми ван-дер-ваальсовыми силами (дисперсионными силами). Поэтому физическая адсорбция не является специфической для поверхности кристаллов, т.е. количества газа, адсорбированные на различных гранях кристалла, сравнимы между собой. [c.266]

    Принято также различать системы по степени молекулярного взаимодействия дисперсной фазы с дисперсионной средой. Системы, для которых характерно интенсивное взаимодействие дисперсионной среды с поверхностью дисперсной фазы, выражающиеся в образовании развитых сольватных слоев, называются лиофильными. Если взаимодействие выражено очень слабо, то системы называют лио-фэбными. Применительно к водной дисперсионной среде системы называют соответственно гидрофильными и гидро-фобныьш. [c.11]

    Как было видно из рассмотренных в гл. 1 примеров, в ГАХ преимушественно наблюдаются слабые межмолекулярные ван-дер-ваальсовы взаимодействия (дисперсионные и электростатические), а также при не очень высоких температурах колонны водородные связи и в редких случаях донорно-акцепторные взаимодействия и комплексообразование. Эти взаимодействия должны быть обратимы, молекулы веществ должны легко десорбироваться с поверхности адсорбента. Чтобы можно было элюировать вещества за приемлемое время при температурах не выше 450 °С, необходимо, чтобы энергия адсорбции была не более 120 кДж/моль. Для повышения эффективности необходимо, чтобы поверхность была химически и геометрически возможно более однородной [5]. В работе [335] описаны способы оценки неоднородности поверхности адсорбентов для хроматографии. [c.150]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Способность веществ (алюмосиликатов, активированного угля и др.) адсорбировать на своей поверхности некоторые компоненты из нефтепродуктов обусловливается дисперсионным, ориентационным и индукционньм взаимодействием углеводородов и широко используется в технологии производства масел, парафинов и других продуктов. 1учше всего на алюмосиликатах адсорбируются непредельные углеводороды, асфальто-смолистые вещества и ароматические соединения слабо адсорбируются нафтеновые и парафиновые углеводороды. [c.230]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    В отличие от поверхности полярных адсорбентов, образованной ионами, поверхность активного угля образована электронейтраль-ными (ковалентная связь) атомами углерода и почти лщпена электрически заряженных центров, аполярна. Вследствие этого электростатические силы имеют при адсорбции на угле второстепенное, очень малое значение. Основными же адсорбционными силами являются силы дисперсионные, наиболее слабые из прочих сил молекулярного взаимодействия. Этим объясняются многие свойства активных углей. [c.235]

    Глинистые породы с большинством органических жидкостей или совсем не взаимодействуют, или взаимодействуют слабо. Напримбр, в дизельном топливе, керосине и других нефтепродуктах глинистые породы незначительно набухают, по сравнению с набуханием в воде. Поэтому растворы на нефтя ной основе, дисперсионной средой которых, как правило, является дизельное топливо, считаются инертными к глинистым породам, слагающим стенки скважин. Разбуриваемые глинистые породы не образуют с ними дисперсных систем и выпадают в осадок в желобах или отстойниках или легко удаляются из неводнсрго бурового раствора механическими очистными устройствами. [c.13]

    В разд. 1.1 уже рассматривалось соотношение напряжение-деформация одиночного сегмента цепи, нагруженного в точках на концах. Однако в (несшитых) термопластах большие осевые усилия не могут быть приложены в точках вдоль основной цепной связи, а будут равномерно распределены по цепи благодаря более слабым межмолекулярным силам. Силы, действующие между молекулами, представляют собой сумму сил короткодействующего (ядерного) отталкивания и сил (электронного) вандерваальсового притяжения (которые включают электростатические силы между ионами, диполями и квадрупо-лями, наведенные силы, вызванные поляризацией атомов и молекул, и, в общем, более существенные квантовомеханические дисперсионные силы). Вандерваальсово притяжение вызывает отверждение и кристаллизацию полимеров теоретически оно достаточно хорошо изучено и детально рассмотрено Ланг-бейном [16]. С учетом этой работы и общего списка литературы к гл. 1 можно утверждать, что вторичные силы не насыщены и не направлены, т. е. не ограничены точными положениями соседних атомов, например тетраэдрическими углами связей. В соответствии со справедливостью данных предположений потенциал межмолекулярных сил, действующий на цепь или сегмент, может быть заменен суммой потенциалов взаимодействия всех подходящих пар атомов. Парные потенциалы содержат в себе составляющую силы притяжения, которую определяют теоретически и которая убывает как шестая степень межатомного расстояния [16], и составляющую силы отталкивания, для которой существуют лишь полуэмпирические выражения. Тогда полная энергия межмолекулярного взаимодействия, т. е. энергия когезии твердого тела, представляется в виде суммы парных [c.131]


Смотреть страницы где упоминается термин Взаимодействие дисперсионное слабое: [c.274]    [c.154]    [c.215]    [c.65]    [c.187]    [c.61]    [c.413]    [c.207]    [c.61]    [c.215]    [c.455]    [c.312]    [c.169]    [c.132]    [c.111]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие дисперсионное

Взаимодействие слабое

Дисперсионные

Слабов



© 2025 chem21.info Реклама на сайте