Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обратимость динамическая

    Ионообменная хроматография — сорбционный динамический метод разделения смесей ионов на сорбентах, называемых ионо-обменниками. При пропускании анализируемого раствора электролита через ионообменник в результате гетерогенной химической реакции происходит обратимый стехиометрический эквивалентный обмен ионов раствора на ионы того же знака, входящие в состав ионообменника. Ионообменный цикл состоит из стадии поглощения ионов (сорбции) ионообменником (неподвижной фазой) и стадии извлечения ионов (десорбции) из ионообменника раствором, который проходит через сорбент (подвижная фаза или элюент). Разделение ионов обусловлено их различным сродством к ионообменнику и происходит за счет различия скоростей перемещения компонентов по колонке в соответствии с их значениями коэффициентов распределения. [c.223]


    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    Здесь же следует упомянуть и о применении дисперсии звука для исследования скоростей обратимых реакций в системах с динамическим равновесием. Если звуковая волна с частотой V проходит сквозь равновесную систему, то при частоте, соответствующей частоте одной из происходящих в системе реакций, будет наблюдаться аномально большая дисперсия звуковой энергии. [c.64]

    Поскольку при обратимом гидролизе устанавливается динамическое равновесие, то в соответствии с законом действующих масс можно сместить это равновесие в ту или иную сторону за счет введения в раствор кислоты или основания. Этим часто пользуются для усиления или подавления процесса гидролиза, в частности, с целью поддержания постоянной концентрации ионов водорода в растворе. Прибавление кислоты вызывает усиление гидролиза по аниону (смещение равновесия вправо в результате связывания ионов в воду) гидролиз по катнсну усиливается в присутствии щелочи. Таи, если к раствору буры N32840, добавить кислоту, т. е. связать гидроксид-ионы, то гидролиз [c.214]


    В нефтяной системе при данных условиях углеводородные и неуглеводородные соединения образуют сильно структурированную (надмолекулярные структуры), слабо структурированную (сольватные оболочки) и неструктурированную (дисперсионная среда) части. Между ними устанавливается обратимое динамическое равновесие. Для изменения равновесия (соотношения трех частей сложной структурной единицы) необходимо изменить энергию нефтяной системы. Изменение количества энергии в системе существенным образом сказывается на кинетике протекания стадий слабых и сильных взаимодействий. [c.158]

    Как известно, электролитическая диссоциация веществ в растворах — также процесс обратимый, ведущий к установлению динамического равновесия. Например, для процесса распада соединения [c.227]

    Кроме априорного, рассматривается также и апостериорный подход к проблеме необратимости макроскопических явлений, связанный с эргодической гипотезой, с помощью которой вопросы необратимости могут быть наиболее чистым образом сопоставлены с обратимыми динамическими законами. Проблема связи необратимых макроскопических процессов с обратимыми динамическими законами имеет исключительно важное принципиальное значение в физике, и настоящая книга, привлекающая внимание читателя к этим вопросам и дающая достаточно подробную их трактовку, приобретает тем самым дополнительную ценность. [c.7]

    Пониженная температура. Если полимеры с высокой когезионной прочностью, легко кристаллизующиеся при растяжении (НК или хлоропреновый каучук), подвергаются воздействию умеренно низких температур в течение значительного периода времени, возникает явление обратимого динамического повышения жесткости, известное как кристаллизация. В смеси с НК такое явление возникает наиболее быстро примерно при -26 °С, и при -12 °С в хлоропреновом каучуке. Это обратимый эффект, и относительные скорости кристаллизации различны для разных сортов материала. Существует специальный сорт НК, устойчивый к кристаллизации. Кристаллизация может быть сведена к минимуму, если применять очень жесткие состояния полимеризации. Иногда для этой цели в рецептуру включают повышенное количество наполнителя и нефтяных пластификаторов. В смеси на основе хлоропренового каучука не следует применять сложноэфирные пластификаторы, так как они по не вполне понятным причинам часто увеличивают скорости кристаллизации. Воздействие низких температур на все резины вызывает обратимое повышение жесткости в статических условиях, причем температура, при которой возникает подобное явление, зависит от температуры стеклования полимера. В динамических условиях при сильном увеличении жесткости появляется риск появления трещин. [c.138]

    Адсорбция представляет собой процесс обратимый, поскольку наряду с ней идет также противоположный процесс десорбции, т. е. переход адсорбированных ионов или молекул с поверхности -адсорбента в раствор. Одновременное течение этих двух взаимно противоположных процессов приводит, как и всегда, к состоянию динамического равновесия, называемого адсорбционным равновесием. [c.111]

    Обратимые реакции. Если продукты химической реакции могут сами реагировать, воспроизводя первоначальные вещества, то наблюдаемая скорость реакции будет уменьшаться по мере накопления продуктов реакции. В конце концов должно быть достигнуто состояние динамического равновесия. В этом состоянии обе реакции, как прямая, так и обратная, имеют равные скорости. Такие системы относятся к типу обратимых реакций. Их изучение представляет большой интерес, поскольку можно кинетическое поведение подобных систем связать с термодинамическими свойствами (равновесием) конечной системы. [c.32]

    Пользуясь этим определением, можно опытным путем отличить сложную систему. Практически различают три типа таких систем. Первый тип представляет собой системы обратимых реакций — реакция не идет до конца, а в конечном итоге приходит к состоянию динамического равновесия. Такое равновесие обычно можно обнаружить путем непосредственного анализа конечного состояния системы. [c.90]

    Если продукты реакции способны взаимодействовать, образуя исходные реагенты, процесс рекомбинации протекает до тех пор, пока не установится динамическое равновесие и скорость прямой реакции станет равна скорости обратной. Теоретически все реакции можно рассматривать как обратимые, но часто скорость обратной реакции весьма мала или даже неощутима. Обратимость реакций приобретает особый интерес, так как позволяет обнаружить связь между кинетикой и термодинамикой. Рассмотрим реакции [c.62]

    Поскольку при обратимом гидролизе устанавливается динамическое равновесие, то в соответствии с законом действия масс можно сместить равновесие в ту или иную сторону введением в раствор кислоты или основания. Этим часто пользуются для усиления иЛи подавления процесса гидролиза. [c.268]


    Изучение квантовой динамики элементарных атомных и молекулярных столкновений дает возможность, используя аппарат статистической механики [119], получить выражение для макроскопически наблюдаемых свойств, а также, исходя из экспериментальных данных о рассеянии, восстановить потенциалы, приводящие к наблюдаемому рассеянию. Как уже было отмечено выше, в химической реакции должны выполняться динамические законы сохранения, а также принцип микроскопической обратимости (если взаимодействие не изменяется со временем). Все эти требования непосредственно удовлетворяются при использовании 8-матрицы рассеяния. Сохранение материи выражается унитарностью 8-матрицы по отношению к входным и выходным каналам. Сохранение полной энергии и углового момента выполняется, если взять 8-матрицу диагональной по этим величинам. Сохранение полного импульса учитывается переходом к системе центра масс. [c.19]

    К разрешению указанного противоречия можно подойти и с другой точки зрения. Выразив константы скорости прямой и обратной реакций через соответствующие динамические параметры, запишем [204] константу равновесия для обратимой реакции диссоциации молекул брома следующим образом  [c.124]

    Многие органические соединения при нагревании в присутствии катализаторов способны выделять водород, превращаясь при этом в ненасыщенные соединения. Такой процесс называют дегидрированием. В силу обратимости каталитических реакций он противоположен, реакциям гидрирования. В зависимости от условий опыта между гидрированием и дегидрированием существует динамическое равновесие, смещению которого способствуют различные факторы в первую очередь температура и давление. Экзотермические реак ции гидрирования протекают при сравнительно низких температурах повышение давления сказывается положительно. Дегидрирование связанное с поглощением пепла (эндотермическая реакция), уско ряется при более высоких температурах, повышенные давления тормозят процесс. Для дегидрирования пригодны обычные гидрирующие катализаторы, но восстановленные при более высоких температурах. Установлено, что гидрирующие катализаторы (N1, Со, Си) можно превратить в активные дегидрирующие путем дезактивирующих добавок, что позволяет им быть активными при более высоких температурах (до 400—500°). [c.251]

    Второй класс автоколебательных систем характеризуется тем, что автоколебания в них существенно зависят от скорости подачи исходных реагирующих веществ в реактор. В этом случае колебательное поведение системы обусловливается соотношением скоростей транспорта реагирующих веществ в реактор и собственно химической реакцией. Для описания динамического поведения реактора идеального смешения наряду с системой уравнений типа (7.18), описывающей протекание процессов на элементе поверхности, необходимо рассматривать уравнения, описывающие изменения концентраций реагирующих веществ в газовой фазе [116, 131]. Взаимодействие реакции, скорость которой нелинейна, с процессами подачи реагирующих веществ в реактор идеального смешения обусловливает при определенных значениях параметров возникновение нескольких стационарных состояний в режимах работы реактора. При наличии обратимой адсорбции инертного вещества (буфера) в системе возможны автоколебания скорости реакции. При этом на поверхности сохраняется единственное стационарное состояние, и автоколебания обусловлены взаимодействием нелинейной реакции и процессов подвода реагирующих веществ в реактор. [c.319]

    Не следует смешивать понятий химически и термодинамически обратимый процесс. В первом случае речь идет о направлении процесса, во втором —о способе его проведения. Химически обратимый процесс может идти В прямом и обратном направлении, но термодинамически необратимо (см. выше о реакции Н2 + СЬ). Термодинамически обратимый процесс осуществляется лишь через состояния динамического равновесия. [c.29]

    Между ионами и недиссоциированными молекулами устанавливается динамическое равновесие, как при обратимой химической реакции [c.43]

    Ионный обмен представляет собой обратимое стехиометрическое замещение подвижного иона, связанного с ионогенной группой ионита, на другой одноименно заряженный ион, находящийся в растворе. Количественной характеристикой ионита является полная обменная емкость ПОЕ. Определение ПОЕ можно осуществить статическим или динамическим методом, основанно.м обычно на реакциях, протекающих [c.51]

    Следовательно, коагуляция — обратимый процесс, и при определенных условиях в системе устанавливается динамическое равновесие (золь г агрегаты), которое мешает процессу коагуляции идти до конца. [c.91]

    В этом смысле почти все химические реакции являются двусторонними. В ходе их протекания исходные вещества образуют продукты, которые, вступая во взаимодействие между собой, образуют снова молекулы исходных веществ. Пока скорости этих процессов неодинаковы, происходят заметные изменения количеств реагентов. Если скорости прямого и обратного процессов становятся равными, то наступает динамическое равновесие, прямой и обратный процессы полностью компенсируют друг друга. В этом случае концентрации реагентов перестают изменяться и подчиняются термодинамическому закону действующих масс. Иногда химическая реакция практически может быть обусловлена лишь односторонним процессом. Это может произойти, если продукты быстро удаляются из зоны реакции и не успевают вступать во взаимодействие. Например, выделение газа или выпадение осадка из раствора. В этом случае скорость обратной реакции несоизмеримо меньше скорости прямой. Заметим, что понятие двусторонних реакций не соответствует термодинамическому термину обратимый процесс . Двусторонние химические реакции могут быть названы термодинамически обратимыми только вблизи равновесия, когда скорости прямой и обратной реакций лишь бесконечно мало отличаются друг от друга. [c.267]

    Обратимые фазовые превращения наблюдались в условиях динамического нагружения у многих веществ. Их легко обнаружить, так как в момент перехода одной формы в другую на кривой ударной сжимаемости (ударная адиабата), получаемой в процессе опыта, появляется излом. При 13 ГПа на ударной адиабате при сжатии железа был обнаружен четкий излом, который явился следствием полиморфного превращения, протекающего в этих условиях, т. е. превращения о-Ре 1 е-Ре. Аналогичные явления наблюдались при динамическом сжатии висмута и мрамора при давлениях 13 и 14 ГПа соответственно. [c.214]

    Таким образом, в растворах сильных электролитов будут находиться только ионы, в растворах слабых электролитов — одновременно молекулы и ионы растворенного вещества. Однако не надо думать, что процесс диссоциации слабого электролита заканчивается распадом определенной доли молекул на ионы. В действительности в растворе непрерывно протекает процесс диссоциации молекул на ионы и обратный процесс объединения ионов в молекулы. Между этими двумя процессами устанавливается динамическое равновесие сколько молекул в единицу времени распадается на ионы, столько же их образуется из ионов. Следовательно, диссоциация растворов слабых электролитов является процессом обратимым. Степень диссоциации таких электролитов зависит от концентрации растворов с уменьшением концентрации она растет. Это объясняется тем, что с уменьшением концентрации уменьшается вероятность встречи ионов в растворе, приводящая к образованию молекул. [c.131]

    В обратимом процессе через некоторое время устанавливается химическое равновесие. Равновесным состоянием называется такое термодинамическое состояние системы, когда при постоянных внешних условиях параметры системы (состав, давление и др.) не изменяются во времени, причем стабильность характеристик системы не обусловлена протеканием какого-либо процесса с участием внешней среды . Истинное равновесие является динамическим - постоянство свойств системы обусловлено не отсутствием процессов на молекулярном уровне, а одинаковой скоростью прямого и обратного процессов, [c.186]

    При рассмотрении закрытых химических систем, уравнения движения которых (3.6) построены согласно (3.7), основной динамической аксиомой является принцип детального равновесия существование такого вектора с е F+ с положительными компонентами с > О, i = = 1,. . ., 7V, что Wj( ) = О при любом / = 1,. . R. Как указывалось в гл. 1, принцип детального равновесия Фаулера есть макроскопическое проявление принципа микроскопической обратимости Толмепа. Чтобы точнее сформулировать следствия этого принципа, введем следующее определение. [c.117]

    В последнее время при помощи метода динамического программирования получены интересные результаты. Грюттер н Мессикоммер показали, что для реакций первого порядка (включая обратимые, параллельные и консекутивные), проводимых изотермически в каскаде кубовых реакторов, максимальная производительность достигается при равном распределении объема между реакторами. Если порядок реакции не равен единице, это положение неверно однако, например, для изотермических реакций второго порядка разница в производительности при оптимальном и равном распределении объема незначительна Поэтому из техничес Ких и экономических соображений следует, что в изотермическом каскаде все реакторы могут иметь один и тот же объем. Арис применил теорию динамического программирования к трубчатым и к многосек- [c.220]

    Движение потока в радиальных каталитических реакторах есть совокупность течений в системе каналов с проницаемыми (нористымп) стенками. Поэтому метод аэродинамического расчета базируется па задаче о распределении средней скорости по оси пористого канала. Исследуя течение в пористых каналах с отсосом через стенки, обнаружили [4], что при интенсивном отсосе конвективный поток импульса на 3—4 порядка превышает вязкие напряжения вплоть до зпачений г/Я = 0,91 и, следовательно, вязкой диссинацие механической энергии в ядре потока можно пренебречь. Основные динамические процессы локализованы в пристенной области. Это позволяет посредством усреднений свести задачу к рассмотрению одномерного течения, на границе которого возникают силы Мещерского, вызванные изменением расхода. В этом случае главным является вопрос, каким образом их работа распределяется между механически обратимой и диссипируемой энергией. На этот вопрос можно ответить, рассматривая течение в рамках уравнения энергии. Общая теория и анализ литературных данных приводят к выводу, что работа сил Мещерского примерно поровну распределяется между механически обратимой и диссипируемой энергией. [c.132]

    Кажущаяся вязкость псевдопластичной жидкости уменьшается мгновенно при увеличении скорости сдвига. Однако для ряда жидкостей кажущаяся вязкость уменьшается постепенно. Такие жидкости называют тиксотропнылш. С течением времени их структура постепенно разрушается при определенной скорости сдвига. Тиксотропия — процесс обратимый, и через некоторое время устанавливается динамическое равновесие, когда скорости структурообразования и разрушения структуры становятся равными [21. [c.184]

    Чтобы получить в элементе электрическую работу, надо подключить к нему какой-нибудь прибор (двигатель, осветительную лампу), иначе говоря, сопротивление / . С увеличением сопротивления растет падение напряжения между полюсами элемента и при оо оно становится наибольшим и равным электродвижущей силе (э. д. с.) элемента. Если включить навстречу источник тока, э. д. с. которого отличается на бесконечно малую величину от э. д. с. элемента, то можно провести процесс в прямом и обратном направлениях с бесконечно малыми химическими превращениями, отвечающими состоянию динамического равновесия. Несущественно, что прямой и обратный процессы разделены во времени. 1Гакой процесс называют квазистатическим, чем подчеркивается независимость равновесных состояний от времени. Квазистатический процесс не создает остаточных изменений ни в системе, ни в окружающей среде и по определению является термодинамически обратимым (квазиобратимым). [c.29]

    Количественная характеристика состояния динамического химического равновесия может быть выражена через так называе-мук1 константу хи.чическсго равповвсиг,, которая легко можег быть выведена из следующих рассуждений. Для обратимой-химической реакции типа [c.181]

    Химическая реакция, протекающая в пределах одной фазы, называется гомогенной химической реакцией (например, в растворах или в газообразной среде). Все химические реакции делятся на необратимые и обратимые. Необратимые реакции протекают в одном направлении до конца. В этпх процессах, по крайней мере, одно ич веществ расходуется полностью. Обратимыми реакциями называются такие, у которых получающиеся в итоге реакции продукты вновь реагируют с образованием исходных веществ. Следовательно, обратимые реакции протекают при одних и тех же заданных условиях одновременно в двух противоположных направлениях А+В С-Ь +0. Обратимая реакция не доходит до конца, а протекает только до определенного момента, когда скорости обоих процессов — прямого и обратного — становятся одинаковыми, т. е. в системе настл-пает динамическое равновесие. После этого момента концентрацни всех участвующих в равновесии веществ остаются постоянными неограниченно долгое время. [c.38]

    Все химические реакции одновременно протекают в двух направлениях в сторону образования продуктов реакции (вправо — прямая реакция) и в сторону преврапдения продуктов в исходные вещества (влево—обратная реакция). Вследствие химической обратимости реакции не доходят до конца. Так как скорость реакции прямо пропорциональна концентрации, то с течением времени скорость прямой реакции будет уменьшаться, а скорость обратной расти. Когда обе скорости сравняются, наступит химическое равновесие. Химическое равновесие — динамическое, характеризуется постоянством равновесных концентраций (или парциальных давлений) всех участников реакции при постоянстве внешних условий и минимальном значении энергии Гиббса или энергии Гельмгольца. [c.50]


Смотреть страницы где упоминается термин Обратимость динамическая: [c.280]    [c.315]    [c.288]    [c.52]    [c.314]    [c.176]    [c.175]    [c.160]    [c.40]    [c.28]    [c.43]   
Введение в теорию кинетических уравнений (1974) -- [ c.22 , c.153 , c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте