Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вандерваальсовы молекулы

    Получило развитие и еще одно совсем другое направление. Совершенствование современных экспериментов дает нам возможность изучать в газовой фазе слабосвязанные кластерные комплексы — так называемые вандерваальсовы молекулы . Существуют кластеры, состоящие из двух и более молекул, каждая из которых имеет устойчивую и замкнутую систему связей. Те дополнительные взаимодействия, которые связывают молекулы друг с другом внутри кластера, значительно слабее, чем обычные химические связи. Тем не менее эти взаимодействия чрезвычайно важны. Эти вандерваальсовы силы отвечают за откло- [c.159]


    В отличие от хемосорбции физическая адсорбция основана главным образом на вандерваальсовом взаимодействии между поверхностью твердого вещества и ее окружением. Поэтому теплота адсорбции нередко составляет не более 40 кДж на моль адсорбированного вещества и вследствие этого адсорбированный слой легко отделяется от поверхности. Удаление молекул адсорбированного вещества с поверхности адсорбента называется десорбцией. Для осуществления процесса десорбции [c.87]

    Совокупность атомов, удерживаемых вместе химическими связями, называется молекулой. Обычно (хотя далеко не всегда) образование связей в молекуле можно объяснить существованием электронных пар, каждая из которых связывает между собой два атома. Такая связь, образуемая электронной парой, называется ковалентной связью. Сумма атомных масс всех атомов в молекуле дает ее молекулярную массу. Хотя атомы, относящиеся к различным молекулам, непосредственно не связываются друг с другом, все молекулы обладают некоторой липкостью и притягиваются к другим молекулам. Эти вандерваальсовы силы притяжения заставляют молекулы газа слипаться друг с другом, образуя жидкость, если температура становится достаточно низкой под действием тех же сил молекулы жидкости выстраиваются в правильную кристаллическую решетку, когда температура вещества понижается еще больше. Температуры, при которых происходят два указанных перехода, называются соответственно температурой кипения (7 п) и температурой плавления (7 ,). [c.52]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    Вандерваальсовы силы в молекулярных твердых и жидких веществах обычно а) возрастают с увеличением размера атомов и молекул, б) являются главным образом отталкивательными, в) обусловливают высокие температуры плавленая и кипения, г) существуют только в системах с постоянными диполями. [c.592]


    Прп переходе от реакций неполярных молекул к реакциям между ионами или полярными молекулами механизмы элементарных стадий резко меняются. Действительно, силы электростатического взаимодействия имеют другой порядок и в отношепии масштаба расстояний, п в отношении абсолютных значений, поскольку вандерваальсовы сплы уменьшаются с расстоянием по закону 1/Р, тогда как электростатические — по закону 1/Р. [c.33]

    Нетрудно видеть, что если допустить правильность механизма II, т. е. допустить возможность образования указанных комплексов, многие случаи несоответствия формул (19.19) и (19.20) получают простое объяснение. Например, в случае рассмотренной выше реакции Л+Л + Аг=Лг-ЬАг (стр. 293), подставляя в формулу (19.21) /гд = 10- ° и Л = 10 см мо-лей сек , находим "3 = 33,0 /ска г отсюда энергия связи Аг — Л == = 35,5 — 33,0 = 2,5 ккал. Эта величина близка к энергии связи в вандерваальсовых молекулах и поэтому представляется вполне правдоподобной. [c.294]

    Как обсуждалось в предыдущей главе, квантовохимические методы можно успешно использовать для расчетов равновесных и кинетических характеристик химических процессов. Это позволило перейти от случаев, когда имеется подробная экспериментальная информация о молекулярных свойствах каждого компонента, к процессам, для которых эта информация (о реагентах, продуктах или активированных комплексах) недостаточно полна. Анализ энергетических гиперповерхностей показывает, что во многих случаях по меньшей мере один из компонентов изучаемого процесса не является, строго говоря, индивидуальным химическим соединением, а представляет собой смесь по крайней мере двух изомерных форм. При этом процесс, который с экспериментальной точки зрения описывается одним химическим уравнением, разбивается на соответствующее число частичных процессов. Статистико-термодинамические характеристики каждого частичного равновесия или реакции можно получить на основе квантовохимических вычислений. Однако эксперимент обычно не позволяет измерить свойства отдельных изомеров или обнаружить проявления частичных процессов — мы получаем лишь суммарные характеристики полного процесса. Ряд таких случаев был найден в недавних квантовохимических исследованиях равновесий и реакций (как обычных, так и с участием вандерваальсовых молекул). Поэтому возникла потребность в обобщении обычной концепции характеристик химических реакций, которое учитывало бы изомерию произвольного компонента равновесия или активированного комплекса реакции. При этом в случае, когда у каждого компонента есть только один изомер, эта обобщенная схема должна переходить в обычную концепцию, рассмотренную в предыдущей главе. Прежде чем приступить к систематическому выводу необходимых соотношений, приведем несколько примеров с изомерией компонентов. [c.99]

    Представителем процессов, для которых можно интуитивно ожидать частую изомерию (по крайней мере для одного компонента реакции), является образование вандерваальсовых молекул. Действительно, уже для реакции [c.102]

    Расчеты размеров высокомолекулярных сера органических соединений с известной структурной формулой, исходя из длин углов связей и Вандерваальсовых радиусов атомов, показывают, что они могут изменяться в пределах от 0,5 до 1,0 нм, а для металлпорфиринов от 0,7 до 1,2 нм. Если учесть то, что в нефтяных остатках эти соединения могут входить в состав более сложных молекул с разветвленной структурой или находиться в составе структурных фрагментов смол и асфальтенов, фактические размеры их можно ожидать более высокими, чем расчетные, например, как указанно вьиие, по данным ГПХ остатков. Более точные данные можно было бы получить тем же методом ГПХ при наличии узких фракций концентратов гетероатомных соединений, выделенных препаративно из нефтяных остатков, но таких данных пока не опубликовано. [c.40]

    В табл. 1-3 сопоставлены температуры плавления и кипения нек о торых веществ, состоящих из простых молекул. Как правило, большим молекулам соответствуют более высокие температуры плавления и кипения, поскольку такие молекулы имеют большую поверхность, что приводит к большим вандерваальсовым силам притяжения. Так, при давлении 1 атм Н2 кипит при - 252,5 С, СН -при - 164,0"С, а СдН1д следует нагреть до + 125,7 С, чтобы его молекулы отделились одна от другой и перешли в газовую фазу. [c.24]

    Если два атома отличаются по присущей им способности притягивать электроны, т. е. по электроотрицательности, то электронная пара, при помощи которой между ними создается химическая связь, смещается в сторону атома с большей электроотрицательностью и на нем возникает отрицательный заряд, а на другом атоме-положительный заряд. Такие связи и молекулы, в которых они имеются, называются полярными. Полярные молекулы не только притягиваются лруг к другу, но и могут притягивать к себе положительные или отрицательные ионы. Температуры кипения и плавления веществ с полярными молекулами выше, чем можно ожидать, судя только по величине вандерваальсовых сил притяжения, поскольку полярность молекул обусловливает появление дополнительных сил межмолекулярного притяжения. [c.52]


    Как объясняется устойчивость твердых веществ, построенных из отдельных молекул Почему Вт2, 12 и все органические вещества не являются газами при комнатной температуре Какие силы удерживают молекулы углеводородов, входящих в состав бензина, в жидком состоянии Чем объяснить существование кристаллов сахара, если между его молекулами нет ни ковалентных, ни ионных связей Устойчивость молекулярных кристаллов становится понятной, если разобраться в природе слабых сил, называемых вандерваальсовым взаимодействием и водородными связями. [c.601]

    Многие молекулы, например Н , N3, О2 и 2, образуют молекулярные кристаллы,, потому что все валентные орбитали входящих в них атомов использованы для построения внутримолекулярных связей либо заняты несвязывающими электронами. Вследствие этого межмолекулярные связи, удерживающие молекулы вместе в кристаллах, оказываются намного слабее, чем внутримолекулярные связи в отдельных молекулах. Слабые силы, обусловливающие межмолекулярную связь, называются вандерваальсовыми силами по имени впервые изучавщего их голландского ученого Я. Ван-дер-Ваальса. [c.611]

    Существуют две основные разновидности вандерваальсовых сил. На коротких межмолекулярных расстояниях наиболее важное значение имеет отталкивание между заполненными орбиталями атомов соседних молекул. Это отталкивание электронных пар схематически иллюстрируется на рис. 14-11. Для описания энергии межмолекулярного отталкивания часто используется следующее аналитическое выражение  [c.611]

    Второй разновидностью вандерваальсовых межмолекулярных сил является притяжение, обусловленное такой синхронизацией движения электронов на заполненных орбиталях взаимодействующих атомов, при которой они по возможности избегают друг друга. Например, как показано на рис. 14-12, электроны на орбиталях атомов, принадлежащих взаимодействующим молекулам, могут синхронизировать свое движение таким образом, что в результате возникает притяжение между мгновенными диполями и индуцированными ими диполями. Если в некоторый момент времени атом, изображенный на рис. 14-12 слева, имеет большую электронную плотность слева (как и показано на рисунке), то этот атом превращается в крошечный диполь с отрицательно заряженным левым концом и положительно заряженным правым концом. Положительно заряженный конец притягивает к себе электроны атома, изображенного на рис. 14-12 справа, и превращает его в диполь с аналогичной ориентацией. В результате между двумя атомами возникает притяжение, потому что положительно заряженный конец левого атома и отрицательно заряженный конец правого атома сближены. Аналогичные флюктуации электронной плотности правого атома индуцируют мгновенный диполь, или асимметрию электронной плотности, на левом атоме. Флюктуации электронных плотностей происходят непрерывно, а их результирующим эффектом является очень слабое, но важное по своему значению притяжение между [c.611]

    На рис. 14-13 показана кривая потенциальной энергии для вандерваальсовых взаимодействий между атомами гелия. При межатомных расстояниях, превышающих 3,5 А, в выражении (14-3) преобладает второй член. При большем сближении атомов они сильнее притягиваются друг к другу2 и энергия системы уменьшается. Однако при расстояниях, меньших 3 А, сильное отталкивание между электронными парами превышает лондоновское притяжение, и потенциальная кривая на рис. 14-13 повышается. Равновесие между притяжением и отталкиванием достигается на расстоянии 3 А, и молекула Не—Не оказывается на 76,1 Дж моль более устойчивой, чем два изолированных атома Не. [c.614]

    Вандерваальсовы связи в молекулярных кристаллах и жидкостях обычно тем сильнее, чем больше размеры атомов и молекул. Например, при переходе к благородным газам с большими порядковыми номерами прочность вандерваальсовой связи также возрастает это видно из сопоставления кривых потенциальной энергии для систем Не—Не и Аг—Аг, которое проводится на рис. 14-14. Притяжение между более тяжелыми атомами возрастает главным образом по той причине, что внешние электроны в них удерживаются менее прочно, и это делает возможным появление больших мгновенных и индуцированных диполей. Возрастание вандерваальсовых сил объясняет факт плавления твердого аргона при температуре — 184°С (т.е. 89 К), которая значительно выше, чем температура плавления твердого гелия. [c.616]

    Влияние размеров молекул на температуры плавления и кипения хорошо иллюстрируется на примере алканов с линейными молекулами общей формулы С Н2 +2, соответствующие данные для которых приведены на рис. 14-15 (для и от 1 до 20). Возрастание температур плавления и кипения при увеличении молекулярных размеров и массы частично объясняется тем, что для возбуждения движения тяжелых молекул необходима большая энергия. Однако другим важным фактором является то, что, например, молекула эйкозана С20Н42 имеет большую поверхность, чем молекула метана, и, следовательно, повышенное вандерваальсово притяжение. Влияние массы молекул сказывается на температурах плавления и кипения приблизительно одинаково. Однако площадь молекулярной поверхности [c.617]

Рис. 14-17. Образование связей в листовой структуре кристаллического глицина, HзN СН —СОО . я-расположение молекул одного слоя, которые плотно упакованы и удерживаются вместе вандерваальсовыми силами притяжения и водородными свя- Рис. 14-17. <a href="/info/7225">Образование связей</a> в <a href="/info/479222">листовой структуре</a> кристаллического глицина, HзN СН —СОО . я-<a href="/info/463212">расположение молекул</a> одного слоя, которые <a href="/info/1688272">плотно упакованы</a> и удерживаются вместе <a href="/info/1482311">вандерваальсовыми силами притяжения</a> и водородными свя-
Рис. 22-10. Растворение в воде метанола и диметилового эфира. На рисунке указаны приблизительные относительные размеры атомов, измеряемые по расстояния.м вандерваальсова контакта между несвязанными атомами, о-при растворении метанола в воде благодаря малым размерам протона гидроксидной группы в метаноле молекула воды может приблизиться к нему и подвергнуть его нуклеофильной атаке. В результате связь О—И в ме- Рис. 22-10. Растворение в <a href="/info/66518">воде метанола</a> и <a href="/info/17587">диметилового эфира</a>. На рисунке указаны приблизительные <a href="/info/68361">относительные размеры</a> атомов, измеряемые по расстояния.м <a href="/info/97959">вандерваальсова контакта</a> <a href="/info/1591883">между несвязанными</a> атомами, о-при <a href="/info/158425">растворении метанола</a> в воде благодаря <a href="/info/332885">малым размерам</a> протона <a href="/info/147025">гидроксидной группы</a> в <a href="/info/499589">метаноле молекула</a> воды может приблизиться к нему и подвергнуть его <a href="/info/27591">нуклеофильной атаке</a>. В результате связь О—И в ме-
    ВРз и ЫРз должны образовывать молекулярные кристаллы. В КРз важнейшую роль играют диполь-дипольные и лондоновские (вандерваальсовы) силы. В ВРз, кроме того, должны проявляться льюисовы кислотно-основные взаимодействия вследствие того, что неподеленные пары электронов на атомах фтора одной молекулы частично дони-руются к атомам В других молекул, [c.528]

    Поэтому состав поверхностных слоев онределяется, по-видимому, ближнедействующими поверхностными силами. Они, однако, не должны прямо влиять на устойчивость золей или эмульсий против коагуляции, так как, если частицы приблизятся на расстояние нескольких молекулярных диаметров, вандерваальсовы силы притяжения станут такими большими, что частицы останутся соединенными независимо от того, слипнутся они в действительности или коалесцируют. Обратное явление наблюдается для самопроизвольно диспергируемых коллоидов, например, глобулярных протеинов для этих веществ константа Гамакера (см. стр. 93) очень близка к константе воды, так что даже тонкий гидратационный слой достаточен, чтобы удержать молекулы на расстоянии, где энергия притяжения Ван-дер-Ваальса мала по сравненпю с тепловой энергией. [c.84]

    Адсорбция твердыми веществами, по И. Лэнгмюру [17], происходит за счет валентных сил, которыми всегда обладает любая поверхность в силу ее ненасыщенности. Однако за счет химических сил с поверхностью связан лишь первый слой молекул монослой), следующие же слои, образующиеся над поверхностью в виде миниатюрной атмосферы, удерживаются только силами притяжения. Адсорбция монослоем есть, таким образом, явление химическое, и потому она названа хемосорбцией. Поэтому хемосорбция принципиально отличается от обычной, или вандерваальсовой, адсорбции. [c.103]

    В данной монографии мы рассмотрим физическую природу образования дефекта на примере линейных термопластов и эластомеров (табл. 1.1). Известно, что эти материалы имеют широкий диапазон свойств, хотя и состоят из подобных молекул. Их молекулы преимущественно линейные, гибкие имеют высокоанизотропные (невытянутые) цепи с молекулярными массами 20000—1 000000 и более. На рис. 1.9 представлена цепная молекула полиамида-6 (ПА-6) в невытянутом состоянии с произвольным выделением сегментов, а на обведенной вставке показано ее основное звено. Относительные положения атомов и часть объема, занятая ими в цепи, иллюстрируются с помощью модели Стюарта для сегмента полиамида (рис. 1.10). Действительный размер распрямленного сегмента —1,97 нм. Если бы к такому сегменту можно было приложить напряжение вдоль оси цепи, то изгиб и растяжение основных связей обеспечивали бы в результате жесткость цепи 200 ГПа [15], в то время как межмолекулярное взаимодействие сегментов вследствие более слабых вандерваальсовых сил обеспечивает жесткость только 3—8 ГПа в направлении, перпендикулярном оси цепи. Характерные свойства твердых полимеров, а именно анизотропия макроскопических свойств, микронеоднородность и нелинейность, а также сильная временная зависимость [c.12]

    Конформационные переходы цепи с кинк-изомерамп, свободная энергия которой при наличии напряжения представляется сплошной линией (рис. 5.1), термодинамически необратимы, а внутренняя энергия переходит в тепло. Представляет интерес постоянная времени процесса перехода если она мала по сравнению со временем, в течение которого происходит растяжение цепи, то кривая напряжение—деформация не слишком сильно отличается от кривой, соответствующей сплошной линии на рис. 5.1, а если постоянная времени слишком велика, то переходы могут быть запрещены и цепи деформируются эластично. Однако при промежуточных значениях постоянных времени наибольшие напряжения не полностью вытянутых цепей будут зависеть от скорости, с которой происходят конформационные переходы, снимающие напряжение. Детальное рассмотрение данного явления потребовало бы изучения формы и взаимодействия цепных молекул, основ термодинамики необратимых процессов [15] и анализа потенциала вторичных, или вандерваальсовых, связей между сегментами [16]. Это привело бы к рассмотрению неупругого деформирования полимеров, которое не является предметом данной книги. Тем не менее все же представляет интерес некоторая информация относительно скорости переходов между различными кинк-изомерами, сопровождающихся релаксацией напряжения в системе. Так как любые переходы, приводящие к движению только одного кинк-изомера, обычно не вызывают удлинения цепи вдоль ее оси, то приходится учитывать по крайней мере одновременную активацию н аннигиляцию двух кинк-изомеров. Подобный процесс состоит из поворота четырех гош-связей и передачи поворота сегмента между кинк-изомерами можно оценить энергию связи, необходимую для преодоления потенциального барьера, которая должна составлять 33,5 кДж/моль для поворота гош-связи [7] и (2,1—5) кДж/моль для вращения СНг-группы [17, 18]. Следовательно, чтобы преобразовать весь кинк-изомер tgtgttgtgt в транс-конформацию, необходима энергия активации 46—63,6 кДж/моль. Можно предположить, что подобные преобразования напряженных цепей ПЭ к состоянию, свободному от напряжений, действительно происходят при скорости деформирования по крайней мере 1 с при температуре ниже точки плавления, т. е. при 400 К. Теперь мол<но рассчитать скорость данного процесса при 300 К с помощью выражения (3.22), которая оказывается равной 0,0018 с . При деформировании цепи энергия активации вращения сегмента только убывает, а скорость переходов, сопровождающихся ослаблением напряжения, возрастает [19]. С учетом подобного [c.130]

    В разд. 1.1 уже рассматривалось соотношение напряжение-деформация одиночного сегмента цепи, нагруженного в точках на концах. Однако в (несшитых) термопластах большие осевые усилия не могут быть приложены в точках вдоль основной цепной связи, а будут равномерно распределены по цепи благодаря более слабым межмолекулярным силам. Силы, действующие между молекулами, представляют собой сумму сил короткодействующего (ядерного) отталкивания и сил (электронного) вандерваальсового притяжения (которые включают электростатические силы между ионами, диполями и квадрупо-лями, наведенные силы, вызванные поляризацией атомов и молекул, и, в общем, более существенные квантовомеханические дисперсионные силы). Вандерваальсово притяжение вызывает отверждение и кристаллизацию полимеров теоретически оно достаточно хорошо изучено и детально рассмотрено Ланг-бейном [16]. С учетом этой работы и общего списка литературы к гл. 1 можно утверждать, что вторичные силы не насыщены и не направлены, т. е. не ограничены точными положениями соседних атомов, например тетраэдрическими углами связей. В соответствии со справедливостью данных предположений потенциал межмолекулярных сил, действующий на цепь или сегмент, может быть заменен суммой потенциалов взаимодействия всех подходящих пар атомов. Парные потенциалы содержат в себе составляющую силы притяжения, которую определяют теоретически и которая убывает как шестая степень межатомного расстояния [16], и составляющую силы отталкивания, для которой существуют лишь полуэмпирические выражения. Тогда полная энергия межмолекулярного взаимодействия, т. е. энергия когезии твердого тела, представляется в виде суммы парных [c.131]


Смотреть страницы где упоминается термин Вандерваальсовы молекулы: [c.160]    [c.86]    [c.87]    [c.71]    [c.36]    [c.24]    [c.26]    [c.615]    [c.616]    [c.617]    [c.618]    [c.619]    [c.642]    [c.305]    [c.171]    [c.96]    [c.440]    [c.6]    [c.303]    [c.132]    [c.133]    [c.19]    [c.25]   
Возможности химии сегодня и завтра (1992) -- [ c.159 , c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Вандерваальсовы



© 2024 chem21.info Реклама на сайте