Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород токсичность

    Известны другие случаи терморазложения нитрофоски на складах, возникающие от разогрева продукта при ведении сварочных работ. Эти случаи также сопровождались выделением больших объемов весьма токсичных газов. При тепловом разложении нитрофоски выделяются газообразные продукты примерно следующего состава 50% паров воды, 25% азота. 12% закиси азота, 13% двуокиси азота, хлора, хлористого водорода, окиси азота и др. Поэтому на складах аммиачной селитры и нитрофоски также необходимо соблюдать меры предосторожности. Для этого прежде всего необходимо исключить возможность смешивания этих продуктов с другими горючими материалами. На складах должны храниться только кондиционные продукты. Не допускается содержание в них примесей сверх допустимых пределов, особенно примесей, катализирующих процесс разложения. Должны принимать меры, исключающие возможность возникновения опасных источников нагрева продуктов, в том числе на локальных участках. Для ликвидации возникновения по каким-либо причинам очага теплового разложения продукта нужно применять только воду, в которой эти вещества хорошо растворяются. [c.61]


    В производстве ацетилена образуются газовые сме си, содержащие взрывоопасные вещества (ацетилен, водород, метан и др.) и токсичные соединения (например, окись углерода). При получении ацетилена применяются различные органические растворители, также являющиеся горючими жидкостями (диметилформамид, N-метилпирролидон) или легковоспламеняющимися жидкостями (метанол). Наиболее токсичны из этих растворителей диметилформамид и метанол. При авариях или неправильной эксплуатации наличие в производственном цикле перечисленных веществ может явиться причиной отравлений, ожогов и других несчастных случаев. [c.138]

    Спецификой работы установки, требующей строжайшего соблюдения правил безопасности и правил эксплуатации аппаратов, работающих под давлением, является применение взрывоопасных и токсичных веществ. Установка паровой каталитической конверсии углеводородов для производства водорода часто является составной частью установки гидрокрекинга ее строительство обходится примерно в 25—30 % стоимости установки гидрокрекинга. [c.63]

    Здания цехов, в которых имеются взрывоопасные или токсичные вещества с удельным весом газов менее единицы (ацетилен, водород, метан, этилен и др.), должны иметь аэрационные фонари, дефлекторы или другие устройства для удаления легких взрывоопасных газов из-под верхнего покрытия. [c.47]

    Хемосорбционно-каталитическая очистка осуществляется при повышенной температуре. Для гидрирования сернистых соединений в газ подается водород. Очищенный газ выводится из установки при температуре 300—380 °С и содержит 5—12% водорода. Токсичных стоков и выбросов нет. [c.212]

    К числу недостатков процесса фтористоводородного алкилирования относится высокая стоимость фтористого водорода и его сильная токсичность. Во избежание утечек фтористого водорода особое внимание должно быть уделено уплотнительным соединениям установок. Чтобы предотвратить водородную хрупкость оборудование установок фтористоводородного алкилиро-вания изготовляется из высококачественных углеродистых сталей. [c.137]

    Нестабильность пероксида водорода и высокая стоимость затрудняют ее использование, хотя она имеет преимущества перед хлорными окислителями, так как не вызывает изменения солевого состава сточных вод. Несмотря на высокий окислительно-восстановительный потенциал, пероксид водорода в ряде случаев менее эффективен по сравнению с хлорными окислителями, особенно при окислении сложных органических соединений, когда возможно образование продуктов неполного окисления, по токсичности более опасных, чем исходные. [c.494]

    Трубопроводы взрывоопасных и. токсичных газов, работающие под давлением, нередко разрушаются по сварным швам. Отмечены случаи разрыва трубопроводов, транспортирующих этилен, метановодородную фракцию, газовые смеси окиси углерода и водорода и др. [c.188]


    Арматура является неотъемлемой частью любого газопровода. На технологических трубопроводах цикл открытие — закрытие повторяется довольно часто, несколько раз в час, что требует от арматуры большой надежности. В практике эксплуатации трубопроводов отмечены аварии, вызванные неисправностью арматуры, неправильным выбором конструкции или низким качеством изготовления (утечка газа через сальниковые уплотнения или запорные устройства, разрыв чугунной арматуры вследствие несоответствия условиям работы, разрушение арматуры при транспорте по газопроводам хлора, водорода, ацетилена, этилена и других взрывоопасных, горючих и токсичных газов). [c.198]

    Наиболее токсичными являются аммиак, сероводород, этилмеркаптан, мышьяковистый водород, сернистый аммоний. [c.47]

    Эксплуатация производства ацетилена недопустима без работающей вентиляции. Следует предусматривать, как правило, автоматическую остановку производства ацетилена в случае прекращения работы системы вентиляции. В помещениях производства ацетилена необходимо производить непрерывный автоматический контроль воздуха на содержание в нем токсичных и взрывоопасных газов (ацетилен, окись углерода, цианистый водород и др.). При повышении концентрации газов сверх установленной нормы должны автоматически подаваться световые и звуковые сигналы. [c.129]

    Натриевая соль (кристаллизуется с 2НгО) легко растворима в воде. Она значительно токсичнее моно- и дииодсоединений и во-многих отношениях ведет себя подобно йодоформу. Атомы лода еще более неустойчивы, чем в йодоформе, и при окислении соли кислородом воздуха в спиртовом растворе уже через несколько-минут выделяется свободный иод. Реакция с кислородом в крови протекает значительно медленнее. Разложение соли происходив в ничтожной степени в условиях сохранения ее водного или спиртового раствора в темноте в атмосфере инертного газа. При действии света в отсутствие кислорода соль разлагается, выделяя иодистый водород и бисульфат натрия  [c.121]

    Недостатки применения газового топлива — взрывоопасность, токсичность, зависящая от содержания СО. В основном в качестве газообразного топлива используют природный газ, газы нефтепереработки, печные газы, водород, сжиженные и др. [c.340]

    Особое внимание необходимо уделять при проектировании, эксплуатации и ремонту трубопроводов, по которому транспортируется печной газ от фосфорных печей. Печной газ состоит в основном из 80% окиси углерода, содержит также элементарный фосфор до 8%, фосфористый водород, сероводород, а также пыль. Газ характеризуется большой токсичностью, взрывоопасен и из-за присутствия фосфора и фосфористого водорода самовоспламеняется. При проектировании газопровода печного газа для безопасной эксплуатации необходимо выполнить следующее  [c.388]

    Полное исключение токсичных выбросов возможно на установках каталитической очистки, когда в присутствии газа-восстановителя (водорода, природного газа и др.) происходит восстановление окислов азота до азота и воды, не загрязняющих атмосферу. При этом степень очистки составляет 98%. [c.211]

    В состав бензинов входят углеводороды, в которых соотношение углерода к водороду может значительно изменяться. Так, в 1 К1- бутана (С.Н ,,) содержится 0,827 кг углерода и 0,173 кг водорода, тогда как в 1 кг бензола (С Н ) содержится 0,923 кг углерода и только 0,077 кг водорода. Теоретически необходимое количество воздуха для сгорания бутана составляет 15,5 кг/кг, а для сгорания бензола — всего лишь 13,3 кг/кг. Преобладание в бензине углеводородов того или иного строения, естественно, сказывается на теоретически необходимом количестве воздуха для сгорания бензина в целом (см. 1л. 5, табл. 5.1). Это обстоятельство следует учитывать при проведении различных расчетов и результатов испытаний на двигателях, так как в последние годы содержание ароматических углеводородов в товарных бен зинах может изменяться от 20 до 55%. Кроме того, в новые товарные бензины, вырабатываемые в нашей стране и за рубежом, добавляют кислородсодержащие соединения различного состава с целью снижения токсичности отработавших газов (так называемые реформулированные бензины). Разрешено добавлять в бензины до 2,7% кислорода в составе любых кислородсодержащих соединений (спирты, эфиры и т.д.). При добавлении в бензин 2,7% кислорода количество теоретически необходимого воздуха уменьшится еще примерно на 0,4—0,5 кг/кг бензина. [c.83]

    Для выброоов нефтепереработки и нефтехимик характерно большое разнообразив токсичных веществ. Особенно вредны такие вещества, как хлор, сероводород, моносксид углерода, ртуть, фв -нол, тиофос, ДДТ, многие металлы и органические соединения. Целый ряд токсичных веществ хииичвс. ие предприятия сбрасывают в больших количеотвах. например, диоксид серы, туман серной кислоты, хдор, хлористый водород, оксиды азота и др. [c.22]

    Вместо разбавленного кислорода иногда для окисления используют водяной пар. Это значительно более безопасная процедура, потому что водяной пар вызывает эндотермическую реакцию образования диоксида и монооксида углерода, а также водорода. С точки зрения безопасности процесса необходимо указать на чрезвычайную токсичность монооксида углерода. Пар в смеси с диоксидом углерода или чистый диоксид углерода также могут выполнять роль окислителя углистых веществ. [c.135]


    Некоторые аварии в производстве винилхлорнда связаны с загазованностью помещений ацетиленом, винилхлоридом, хлористым водородом. Аварийные выбросы в атмосферу производственных помещений взрывоопасных и токсичных газов чаще всего происходят в результате колебаний давления в системе и разрушения самодельных предохранительных мембран, имеющих большой диапазон срабатывания и не обеспеченных отводными трубами. Загазованность иногда создается разгерметизацией сальниковой арматуры, трубопроводов, полимеризаторов и другой аппаратуры, что объясняется низким качеством их изготовления и ремонта. Следует значительно улучшить качество изготовления и монтажа оборудования трубопроводов и арматуры, тщательно подбирать для них коррозионно-стойкие материалы и прежде всего разработать более производительные и надежные смесители ацетилена с хлористым водородом, контактные аппараты, компрессоры ацетилена и реак ционного газа, тепло- и массообменную аппаратуру для газовыде ления и ректификации пожаро- и взрывоопасных смесей под высо кйм давлением. [c.71]

    Однако необходимо помнить, что присутствующая в мета-низируемом сырье окись углерода имеет тенденцию взаимодействовать с никелевым катализатором, в результате чего образуется карбонил никеля. Это сильно летучее, исключительно токсичное вещество, поэтому для того, чтобы иметь возможность поддерживать катализатор в активном состоянии и не допускать утечек газа, необходимо препятствовать его образованию. Предотвратить образование карбонила никеля можно как повышением температуры, так и понижением рабочего давления. Поскольку последнее нерационально, то на процесс метанизации 1В присутствии никелевого катализатора накладывается ограничение как по нижнему температурному пределу (предотвращение образования карбонила никеля), так и по верхнему температурному уровню (процесс метанизации экзотермичен и при чрезмерном повышении температуры возможны как деактивация катализатора, так и смещение равновесия в сторону обратной реакции, т. е. образования окиси углерода и водорода). [c.179]

    MДж/м . и эта углеводороды (содержат токсичные газы (например, цианистый водород), такие газы обычно сжигают в факеле. В этом случае, однако возникает проблема значительного изменения объемных скоростей, что особенно важно для нефтеперерабатывающей промышленности. [c.183]

    Комплекс установок изомеризации при использовании в качестве катализатора смеси НР -]-ВРз имеет определенные преимущества. Однако чрезвычайно высокая коррозионная агрессивность, а также токсичность фтористого водорода и трехфтористого бора затрудняют промышленную реализацию такого процесса, и в настоящее время в эксплуатации находится всего один комплекс установок с использованием смеси НР -I-BP3. [c.202]

    Эта реакция не имеет, по-видимому, значения с энергетической точки зрения физиологическая сущность ее состоит, по-видимому, в образовании перекиси водорода, токсичной для конкурирующих микроорганизмов. Глюкозооксидаза — высокоспецифичный фермент, который может быть использован для микроопределения D-глюкозы в присутствии других axapoв . [c.376]

    Важную функциональную роль в размножении морских ежей играет сернистое производное гистидина овотиол 6.647. После оплодотворения яиц этих беспозвоночных происходит быстрое образование прочной белковой оболочки. Для этого процесса, в основе которого лежит реакция окисления, необходима перекись водорода, и происходит массовый выброс ее в цитоплазму в результате так называемого окислительного взрыва , инициируемого актом оплодотворения. Однако перекись водорода токсична и ее избыток разрушил бы яйцо, если бы в нем не находилось большое количество овотиола, который быстро связывает окислитель по реакции [c.573]

    Новым интересным продуктом органического синтеза является этиленимин (очень токсичная жидкость т. кии. 56 °С). Благодаря наличию реакционноспособного трехчленного цикла этиленимин взаимодействует с разнообразными веществами, содержащими подвижные атомы водорода (аминоэтилирование) [c.276]

    Замена одного хлора в трихлорметильной группе на водород снижает активность для насекомых в 2—4 раза, а токсичность для животных — в 5—15 раз. При замене второго атома хлора на водород токсичность для животных снижается по сравнению с ДДТ в 5 раз, а инсектицидность — в 5—50 раз. 4,4 -Дихлордифенилме-тилметан инсектицидным действием практически не обладает, но является акарицидом. [c.104]

    Это простые окислительные системы, представленные ФМН- и ФАД-содержащими ферментами, а также металлопротеинами. Они более широко распространены в растительных клетках, чем в клетках животных и человека. В клетке около 80% этих ферментов сосредоточено в пероксисомах. Кроме того, они встречаются в мембранах, граничащих с цитозолем. Так происходит окисление альдегидов, аминов, I- и 1)-аминокислот, пуринов. Некоторые из названных веществ являются токсическими. В лейкоцитах, гистиоцитах и других клетках, способных к фагоцитозу, пероксидазный путь окисления субстратов очень активен. Образующаяся Н2О2 используется для обезвреживания болезнетворных бактерий и распада инфекционного материала, поглощенного клетками. Однако избыточное накопление перекиси водорода токсично, особенно для нефагоцитирующих [c.130]

    Особую опасность с точки зрения взрывоопасности и токсичности в условиях производства строительномонтажных работ представляли пересекающий строи тельную площадку мощный ацетиленопровод с взрывны ми мембранами, установленными через каждые 20—40 м и система канализации со сточными водами, загрязненными углеводородами и цианидами. Не исключалас возможность наличия в воздушной подушке канализа ции углеводородов и цианистого водорода. [c.42]

    Пропускание через катализатор Р1 - А12О3 - Р, отравленный сернистыми и азотистыми соединениями, углеводорода, не содержащего серы и азота, приводило к восстановлению активности до первоначального уровня. Те же результаты были получены при обработке катализатора водородом при повышенной температуре (450-500 °С). Таким образом, в изученных условиях отравление катализатора - А12О3 - Р было обратимым. В подобных концентрациях и условиях сера является ядом для данного катализатора в реакции дегидрирования, связанной с действием металлических центров, тогда как азот не влияет на его дегидрирующие свойства. Токсичность соединений серы и азота в виде сероводорода и аммиака объясняется взаимодействием этих соединений с поверхностными атомами металла и донорно-акцепторными центрами фторированного оксида алюминия. Следует предположить, что сера образует с платиной соединения, обладающие пониженной активностью в реакции дегидрирования в данных условиях. Что касается азота, то отсутствие наблюдаемого эффекта в реакции дегидрировакия циклогексана связано с превращением аммиака (в присутствии воды) в ион аммония, экранированная структура которого делает его нетоксичным по отношению к платине. Кроме того, большая часть аммиака должна связываться кислотными центрами катализатора. Слабое влияние серы при ее массовой доле до 0,01% на изомеризацию н-гексана или н-пентана на алюмоплатиновом [c.87]

    В настоящее время каустическую соду (МаОН)ихлор в промышленности получают электролизом поваренной соли в электролитических ваннах с ртутным катодом (рис. УПМб) или с диафрагмой (рис. VIII-17) 1[107]. В США 66% продукции получают диафрагменным сгюсобом. В СССР наибольшее применение нашел способ электролиза с ртутным катодом, так как получаемый продукт отличается высокой степенью чистоты. Кро Ме того, данный способ более экономичен в сравнении с диафрагменным. Существенным недостатком способа является образование токсичных ртутьсодержащих отходов. Образовавшуюся амальгаму натрия разлагают на специальных насадках из соединений различных металлов (циркония, вольфрама), а также графита на едкий натр и водород, а ртуть вновь возвращается в камеру электролиза (см. рис. УПМб). [c.252]

    Горючие паровые облака воспламеняются только при определенных концентрациях компонентов смеси, пределы этих концентраций для каждого вещества свои. На рис. 7.1 показаны пределы воспламеняемости для веществ составляющих основные опасности химических производств. За исключением водорода и метана, все обозначенные на рисунке газы и пары имеют нижние пределы воспламеняемости в воздухе 1,5 - 3% (об.) эти значения приблизительно обратно пропорциональны молекулярной массе газа. Отметим, что олефины имеют более широкую область воспламенения, чем парафины. Область взрываемости несколько уже показанной на рис. 7.1 области воспламеняемости. Таким образом, опасность вопламенения связана главным образом с концентрациями, превышающими 1,5 - 3,0 10 млн". С токсичными газами дело обстоит иначе. Большое количество накопленных для них данных показывает, что летальные концентрации могут быть меньше Ю" млн 1. [c.112]

    Воздухозаборные отверстия аварийной вентиляции располагают в зонах возможных поступлений взрывоопасных и токсичных газов и паров, около технологического оборудования и у глухих стен помещения располагать их у открываемых окон и дверей не следует. Для легких газов со значительными избытками тепла и для водорода все воздухозаборные отверстия располагают в верхней зоне помещения, для легких газов с незначительными избытками тепла и для аммиака — 40% в нижней зоне и 60% —в верхней для тяжелых газов при любых теплоизбытках — только в нижней зоне. [c.83]

    При эксплуатации установок гидрокрекинга необходимо учитывать, что в одном и том же температурном диапазоне скорости гидрокрекинга и деасфальтизации зависят от температуры в большей степени, чем глубина обессеривания ([183]. Следует также иметь в виду, что в этом процессе образуются токсичные карбонилы никеля, кобальта и >10либдена [10, 184]. Из них наиболее токсичен №(С0)4 его допустимая концентрация при восьмичасовой работе равна 10 % (масс.). Карбонилы N1 и Мо разрушаюГся при 48 и 149 °С соответственно. В результате выделяется окись углерода, что создает большую опасность для работающих на установке. Поэтому выгрузку катализатора, не прошедшего регенерацию, рекомендуется проводить в следующем порядке прекращать подачу сырья и пропускать через катализатор водо- род или водяной пар для отпарки углеводородов, после чего выключить подогреватель сырья и охлаждать катализатор в токе водорода, азота или водяного пара прекратить подачу пара при достижении температуры катализатора 150°С продуть катализатор азотом не прекращая подачи азота, выгружать катализатор в железные бочки, закрывая их сразу после заполнения. [c.283]

    В органическом синтезе применяют как чистый оксид углерода, так и его смеси с водородом (синтез-газ) в объемном отно-ценин от 1 1 до 2—2,3 1. Оксид углерода СО представляет со-оой бесцветный трудно сжижаемый газ (т. конд. прн атмосферном ,авлении —192 °С критическое давление 3,43 МПа, критическая температура —130°С). С воздухом образует взрывоопасные месп в пределах концентраций 12,5—74% (об.). Оксид углерода является весьма токсичным веществом, его предельно допустимая концентрация (ПДК) в производственных помещениях составляет 20 мг/м . Обычные противогазы его ие адсорбируют, поэтому применяют противогазы изолирующего типа или имеющие специ -альный гопкалнтовый патрон, в котором находятся оксиды марга ца, катализирующие окисление СО в СО2. Оксид углерода сл сорбируется не только твердыми телами, но и жидкостями, в в торых ои мало растворим. Однако некоторые соли образуют с 3 комплексы, что используют для сорбции оксида углерода аммиачными растворами солей одновалентной меди. йс [c.86]

    Изображенный 4,4 -нзомер — бесцветное кристаллическое вещество, плавящееся при 108,5—109 °С. В техническом продукте он содержится в количестве 70—75% с примесью 2,4 -изомера (20%) и 2,2 -изомера. Товарный ДДТ немного окрашен и имеет более низкую температуру плавления. При нагревании до 180—200°С ом разлагается, отщепляя хлористый водород. Долгое время ДДТ бы.п основным инсектицидом, широко применяемым в быту и сельском хозяйстве для борьбы с вредными насекомыми. В настоящее время его использование ограничено вследствие довольно высокой токсичности, способности долго удерживаться на обработанной почве и накг пливаться в организме животных, птиц и человека. Во многих ст запах, в том числе и в СССР, его применение запрещено. [c.553]

    Данные по относительной токсичности диоксина и аналогичных соединений содержатся в работах [ attabeni,1978] и других. Результать( этих исследований представлены на рис. 15.9, из которого видно, что при замещении водорода в положениях 2, 3, 7, 8 ПХДД становятся крайне токсичными для морских свинок и мышей. [c.407]

    Целью очистки газа чаще e ei O является удаление сернисты соединений, представленных в нефтяных газах в основном серо водородом. Присутствие сероводорода в газе недопустимо вслед ствие 1) корродирующих и токсичных свойств сероводород  [c.296]

    Разработаны также процессы жидкофазной изомеризации. Так, в процессе фирмы Mobil hemi al (США) изомеризация проводится в жидкой фазе при 200—260 °С и 2,1 МПа над цеолитным катализатором [156]. В процессе фирмы Ниппон Гасу Кагаку (Япония) катализатором изомеризации служит смесь фтористого водорода и трехфтористого бора. Процесс осуществляется в жидкой фазе при 100°С и 3 МПа [159]. Отличительной особенностью лроцесса является то, что сырьем здесь служит почти чистый Л1-КСИЛ0Л. Это позволяет значительно уменьщить мощность установки изомеризации и выделения целевых продуктов, но требует сооружения специальной установки по выделению ж-ксилола. Ком-бинация установок изомеризации по способу фирмы Ниппон Гасу Кагаку и выделения Л1-ксилола методом экстракции с использованием того же реагента — комплекса фтористого водорода с трех-фтористым бором делает процесс в целом весьма экономичным. Недостатком, сдерживающим щирокое распространение данного способа, является высокая коррозионная агрессивность и токсичность фтористого водорода и трехфтористого бора. Основные показатели различных процессов изомеризации приведены в табл. 35. [c.197]

    В настоящее время ведутся работы по использованию водорода как топлива для двигателей внутреннего сгорания с целью снижения токсичности выхлопных газов. Фирма "Даймлер Бенц" разработала проект городского автобуса с запасом водорода в гидридах металлов на 400 км пробега. В Канаде намечается пустить трансконтинентальный экспресс на водородном топливе. [c.7]

    Потса содержание фто1ра, аккумулированного корковыми растениями, не превышает 30 млн (в пересчете на сухую массу), фураж не представляет опасности для крупного рогатого скота, однако при концентрации более 50 млн- он становится явно токсичным [646]. Как следует из табл. 1-5, эти концентрации (в пересчете на сухую массу) легко достигаются в растениях, подвергающихся воздействию газов, содержащих около 1,5 млн фтористого водорода. [c.34]

    В нашей стране Институтом проблем машиностроения АН УССР созданы опытные образцы автомобилей ГАЗ-24 Волга и Москвич 412 с бензино-водородным питанием [166, 174]. Гидридный аккумулятор на базе сплава РеТ1 при массе 180 кг содержит около 2,5 кг водорода, что обеспечивает пробег автомобиля в городских условиях эксплуатации 250—300 км. Двигатель работает с переменной подачей водорода на холостом ходу — на чистом водороде, на режиме максимальной мощности — на смеси 97% бензина и 3% водорода. На частичных нагрузках содержание водорода в топливной смеси изменяется в зависимости от состава топливно-воздушной смеси (коэффициента избытка воздуха) по оптимальному закону, обеспечивающему максимальную топливную экономичность двигателя и минимальную токсичность отработавших газов. В результате эксплуатационный расход бензина снизился на 35—40%, а вредные выбросы сократились в несколько раз. [c.181]

    Подобие полей течения и коэффициентов теплоотдачи. Правильно поставленные эксперименты па модельном теплообменнике позволяют разобраться в основных соотношениях и особенно в принципах подобия. Потеря напора и теплообмен определяются числами Нуссельта, Прандтля, Рейнольдса и Маха. В натурных теплообменниках часто используются токсичные или опасные с точки зрения техники безопаспости вещества типа ртути, водорода или серной кислоты. В тех случаях, когда необходимо сделать простую и недорогую [c.310]

    Актуально сокращение количества сточных вод, что может быть достигнуто проведением термоподготовки шихты (влага, получаемая при термоподготовке, свободна от токсичных веществ), обогревом аммиачных колонн глухим паром, улавливанием сероводорода, аммиака, цианистого водорода в начале газового тракта, улучшением технологии извлечения бензола из масла. Проведение указанных мероприятий позволяет на 30 - 40 мас.% уменьшить количество сточных вод. [c.78]


Смотреть страницы где упоминается термин Водород токсичность: [c.134]    [c.238]    [c.146]    [c.60]    [c.344]    [c.324]   
Технология неорганических веществ и минеральных удобрений (1983) -- [ c.132 , c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Хлористый водород токсичность



© 2025 chem21.info Реклама на сайте