Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм коагуляционный

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]


    Конформация макромолекул водорастворимых полимеров и их отношение к твердой фазе определяют механизм защитного действия, по-разному реализующийся в пресных и соленых средах. На примере КМЦ наши опыты показали, что в первом случае практически отсутствует адсорбция полимера па глине, в связи с чем неприменимы обычные представления о структурно-механическом барьере, обусловленном адсорбционными слоями. Основным фактором стабилизации пресных суспензий является образование смешанных поли-мер-глипистых структур. В результате резко снижается частота и эффективность соударений частиц твердой фазы, вызывающих коагуляционное агрегирование. Сопряженные высокогидрофильные [c.91]

    Между тем результаты именно теоретических исследований в области фундаментальных наук, в частности физической и коллоидной химии, заставляют критически пересмотреть принятые взгляды на механизм коагуляционных взаимодействий, позволяют создать модель процесса, близкую к процессу реальному, наметить новые пути повышения технологической эффективности коагулирования. [c.3]

    Для определения констант первой и второй областей Кг и результаты наблюдений в каждом опыте аппроксимировались функциями, вид которых определен предположениями относительно механизма коагуляционного структуро-образования (уравнения (3) и (4)). Коэффициенты аппроксимирующих функций Р 1 = о + о, С первой области и Р = а] п (С — С) для второй на- [c.12]

    Большое разнообразие механизмов образования конденсационно-кристаллизационных структур характерно для материалов, процесс получения которых заканчивается спеканием. Процессы спекания лежат в основе технологии керамики, а также порошковой металлургии. Предварительной операцией является формование изделия, включающее составление и получение масс с коагуляционной структурой для изготовления изделий заданной формы и определенного качества. [c.388]

    В настоящее время изданы обобщающие монографии, касающиеся физико-химической механики контактных взаимодействий металлов, дисперсий глин и глинистых минералов. Однако в области вяжущих веществ, в частном случае тампонажных растворов, такие обобщения практически отсутствуют. В этом направлении накоплен большой экспериментальный материал, который изложен в разрозненных статьях, в специальных журналах, информационных изданиях. Уже сейчас высказан ряд различных гипотез и предположений о механизме формирования дисперсных структур в твердеющих системах, которые требуют однозначной трактовки с позиций физико-химической механики с использованием данных об этих процессах, получаемых с помощью различных физических, физико-химических и других методов исследований. Поэтому, наряду с изданием монографии С. П. Ничипоренко с соавторами Физико-химическая механика дисперсных минералов , немаловажное значение имеет издание настоящей книги. Исходя из имеющихся экспериментальных данных в книге сформулированы некоторые принципы и закономерности формирования дисперсных структур на основе вяжущих веществ. Конечная задача физико-химической механики заключается в получении материалов с требуемыми свойствами и дисперсной структурой, с высокими прочностью, термостойкостью и долговечностью в реальных условиях их работь и в научном обосновании оптимизации технологических процессов получения тампонажных растворов и регулировании их эксплуатационных показателей. Для этих целей широко используется обнаруженный авторами в соответствии с кривой кинетики структурообразования цементных дисперсий способ их механической активации, который получил вполне определенную трактовку. В отношении цементирования нефтяных и газовых скважин разработаны глиноцементные композиции с применением различного рода поверхностно-активных веществ, влияющих на процессы возникновения единичных контактов и их прочность в пространственно-коагуляционной, коагуляционно-кристаллизационной и конденсационно-кристаллизационной структурах. [c.3]


    В этих условиях на структурообразование, складывающееся из процессов кристаллизации новообразований и возникновения контактов между ними, накладывается одновременно происходящий процесс разрушения контактов. При коагуляционном механизме структурообразования разрушенные контакты сохраняют способность к обратимому восстановлению, поэтому структурно-механические суспензии в большей степени зависят от числа и дисперсности новообразований. [c.110]

    Таким образом, механизм застудневания и механизм коагуляции коллоидов аналогичны. Поэтому старый термин — застудневание— предложено заменить (Ребиндер) более общим, выражающим и механизм явления коагуляционное структурообразование. [c.230]

    Учитывая, что механизм застудневания и коагуляции имеет много общего, в последнее время предложено термин застудневание заменить более общим названием коагуляционное структурообразование . [c.235]

    При достижении сдвиговым напряжением некоторого значения т шв наступает область медленного вязкопластического течения — ползучести (по Шведову) — в системе с почти неразрушенной структурой (участок П) (см. рис. IX—20). На этом участке сдвиг осуществляется за счет флуктуационного процесса разрушения и последующего восстановления коагуляционных контактов, который под действием приложенных извне напряжений приобретает направленность. Такой механизм ползучести может быть рассмотрен по аналогии с [c.328]

    Таким образом, изменения коагуляционных структур водных дисперсий глинистых минералов, происходящие под действием ультразвуковых колебаний (разрушение первичных агрегатов дисперсной фазы и постепенное образование новых более устойчивых к ультразвуковым воздействиям), полностью подтверждают основную закономерность образования коагуляционных структур дисперсий глинистых минералов. Аналогичен и механизм повышения устойчивости дисперсий — образование наиболее прочных или эластичных пространственных решеток. [c.29]

    Вместе с тем идея о распаде цементных зерен при быстром взаимодействии с водой способствовала развитию теории твердения, особенно вопросам структурообразования, а именно, непременного возникновения коагуляционных структур в дисперсии цемента на ранних стадиях твердения. Представления о начальном периоде коагуляционного структурообразования, независимо от особенностей трактовки механизма процесса гидратации, в эти годы развивались многими учеными как в СССР, так и за рубежом [56, 76, 82, 91, 95—100, 120]. Эти представления, особенно в связи с совершенствованием методов управления свойствами дисперсных структур [98], являются весьма важными. В работах Полака доказана необходимость предварительного коагуляционного сцепления частиц на близком расстоянии при любом последующем способе срастания кристаллов новообразований [114—117]. [c.37]

    Эти явления возникают в результате беспрерывных физико-химических превращений в коагуляционной структуре. Механизм этих процессов обусловлен рядом факторов, их роль зависит в свою очередь от минералогического состава исходного вяжущего, водо-це-ментного отношения, введения добавок, поверхности частичек вяжущего, температуры, при которой происходит процесс и др. [c.192]

    Поддержание в ячейках в процессе проведения испытаний периодически изменяющегося влажностного режима грунта, что имеет место в реальных условиях, приводит к очень сложной картине перераспределения влаги и удаления ее из ячейки при различных температурах. По мере испарения влаги меняется характер связи между почвенными частицами. При этом повышается концентрация почвенного раствора и коагуляционные меж-частичные связи постепенно переходят в конденсационные, а затем при определенных условиях — в кристаллизационные. Механизм движения влаги в такой многофазной, неоднородной системе, каким является влажный грунт, представляет собой сложный физико-химический процесс. В зависимости от различных условий на данный процесс оказывают влияние разность химических потенциалов взаимодействующих между собой составляющих грз нта и различные градиенты, возникающие в нем. [c.70]

    Механизм этого процесса заключается в частичном замещении молекул маслорастворимых ПАВ, стабилизирующих глобулы водной фазы, на молекулы более поверхностно-активных водорастворимых ПАВ, с созданием на глобулах гидрофильных участков и ростом коагуляционной структуры в обратной эмульсии. При этом водорастворимые ПАВ должны вводить в состав готовой эмульсии, а не в ее водную фазу, а их дозировка должна быть строго определенной для предотвращения возможности обращения фаз эмульсии. [c.65]

    Последнее основано на том, что обменная емкость палыгорскита, порядка 30—40 мг-экв/100 г глины, является результатом изоморфных замещений А1 на Mg и 81 на А1. Компенсация избыточных зарядов осуществляется путем адсорбции ионов на внутренних поверхностях в каналах кристаллической структуры. ЧисЛо обменных мест в них во много раз больше, чем на поверхности волокна. При помощи радиоактивных изотопов было найдено, что ионнообменные процессы проходят во внутренних полостях, где А1 и Mg в октаэдрическом положении зачастую оказываются обменными [62]. Это обусловливает существенную разницу механизмов адсорбции палыгорскита и монтмориллонита. У последнего адсорбция происходит на весьма подвижных межпакетных плоскостях и на внешней поверхности пакетов, что легко объясняет его гидрофильность и коагуляционную уязвимость. У палыгорскита адсорбирующиеся ионы, в том числе [c.24]


    Общий физико-химический механизм обусловливает тесную взаимосвязь различных, зачастую противоречивых воздействий на буровой раствор. Такая связь, например, существует между противоположно направленными процессами пептизации и коагуляции. Пептизация, являясь процессом физико-химического диспергирования под влиянием среды, разрушает коагуляционные связи, но в то же время увеличивает число кинетически активных частиц и может стать предпосылкой, подготавливающей коагуляцию. В свою очередь, сохранение данного уровня дисперсности может быть достигнуто как торможением пептизации (ингибированием), так и пред- [c.58]

    При достаточной лиофильности и мягком течении коагуляционного процесса происходит лиофильная коагуляция, характеризующаяся образованием пространственных структур типа карточного домика , по образному выражению У. Гофмана. Пластинчатый характер глинистых частиц и большая мозаичность, обусловленная нахождением на их поверхности групп, различающихся по активности и даже по знаку, позволяет получить такие структуры уже при сравнительно небольших частичных концентрациях. В основе их образования лежит обычный коагуляционный механизм, но молекулярные силы при этом распределены неравномерно, локализуясь на углах, ребрах, выступах и повреждениях поверхности, т. е. местах наибольшей концентрации свободной энергии. Адсорбционно-гидрат-ные слои легче утончаются или даже прорываются на этих участках наибольшей кривизны. При соударении этими участками из них легче выдавливается адсорбционная жидкая фаза и облегчаются условия сближения частиц на расстояния, где молекулярные силы уже достаточно эффективны, чтобы обеспечить сцепление. [c.83]

    Спектроскопически было показано, что у ряда полимеров тиксотропия обусловлена в основном водородными связями. Так, в уайт-спирте или о-ксилоле между полиамидами и алкидными смолами образуются межмолекулярные связи за счет их КН групп и кислородных атомов. Гидроксилы алкидных смол в органических растворителях дают внутримолекулярные водородные связи. А. А. Трапезников и Б. Н. Борисов, исходя из теории Бюхе, рассмотрели механизм образования и разрушения такого рода связей [3]. Для глинистых суспензий, однако, основное значение сохраняет коагуляционный механизм тиксотропии. [c.251]

    В основе образования этих структур лежит обычный коагуляционный механизм, но толька места сосредоточения молекулярных сил должны лть распределены преимущественно по углам и ребрам частиц твердой фазы. [c.214]

    МОДЫ в атмосфере коагуляционный рост ядер только за счет взаимодействия между собой приводит к трехкратному увеличению среднего размера частиц. Следовательно, существуют и другие механизмы стока этих частиц, важнейшим из которых является гетерогенная коагуляция ядер с частицами аккумуляционной моды. Этот механизм по эффективности действия значительно превосходит гомогенную коагуляцию ядер между собой. В связи с этим можно ожидать, что тонкодисперсная фракция аэрозоля с размером частиц 10 —10 мкм в значительных концентрациях присутствует лишь вблизи центров эмиссии газов (в частности, над промышленно развитыми районами континентов и над городами) [157, 158]. [c.59]

    Хотя в металлических золях процесс рекристаллизации идет очень медленно, его все же молено обнаружить при помощи рентгеновских лучей [40] или электронной микроскопии [41, 42]. Рентгенографическое исследование дисперсных фаз золей металлов показало, что в отсутствие поверхностно-активных веществ золи металлов нестабильны и быстро стареют по коагуляционному и ре-кристаллизационному механизмам при электролитическом же методе получения органозолей металлов выделяющиеся высокодисперсные катодные осадки стабилизируются поверхностно-активными веществами в момент их образования и процессы собирательной рекристаллизации почти полностью исключаются [43—45]. [c.9]

    Механизм коагуляционного возникновения субмикроскопических зародышей с учетом влияния ультразвука рассмотрен М. Е. Архангельским и Ю. Г. Статниковым [4]. Однако оценки времен коагуляционного роста, выполненные О. М. Тодесом с соавторами [5], показывают, [c.146]

    До сих пор шла речь, в основном, вообще о структурно-механических (реологических) свойствах свободнодисперсных и связнодисперсных систем, обладающих коагуляционной и конденсационно-кристаллизационной структурой. Вместе с тем эти системы объедиияют большинство различных природных и синтетических материалов, используемых в народном хозяйстве. Поэтому знание общих закономерностей образования систем с определенными структурно-механич ескими свойствами помогает находить методы управления такими свойствами конкретных материалов. К важнейшим материалам относятся металлы, сплавы, керамика, бетоны, пластмассы и др. Как уже указывалось, их реологические свойства описываются типичной для твердообразных систем зависимостью деформации от напряжения (см. рис. VII. 15). Несмотря на небольшую пористость или даже ее отсутствие, все эти материалы полученные в обычных условиях, являются дисперсными система ми. Их структуру составляют мельчайшие частицы (зерна, кри сталлики), хаотически сросшиеся между собой. Технология пере численных материалов, как правило, предусматривает предвари тельный перевод исходного сырья в жидкообразное состояние которое позволяет различными методами регулировать структур но-механические и другие свойства продукта. Технологам, занимающимся получением материалов, очень важно знать механизм образования тех или иных структур, а также методы регулирования их свойств, в частности механических. [c.382]

    Для регулирования ироцесса структурообразования применяют вибрационные, ультразвуковые, кавитационные, электрогидравли-ческие, электромагнитные, электрохимические и другие воздействия.. Все они направлены на ускорение процесса структурообразования и улучшение свойств образующегося цементного камня. Механизм их действия заключается в разрушении экранирующих пленок продуктов гидратации вокруг зерен цемента, препятствующих массообмену между зоной реакции и окружающей жидкой фазой п замедляющих тем самым процесс гидратации. Другое назначение этих методов состоит в разрушении коагуляционных и непрочных конденсационно-кристаллизационных контактов, образующихся на ранней стадии твердения. При этом улучшаются реологические свойства цементной суспензии (повышается ее подвижность) и улучшаются условия образования конечной структуры. [c.115]

    Механизм процесса твердения аналогичен твердению портландцемента, т. е. оба компонента вяжущего вещества растворяются в воде, создают пересыщенный по отношению к продукту синтеза раствор, из которого он выкристаллизовывается в тонкодисперсном виде, образуя коагуляционную либо конденсационно-кристаллизационную структуру в зависимости от кристаллохимически.х особенностей продукта реакции. [c.143]

    Основными компонентами нефтей и нефтяных фракций, наиболее склонными к межмолекулярным и коагуляционным контактам при различных внешних условиях, являются, наряду с высокомолекулярными парафинами, полициклоароматические углеводороды, смолисто-асфальтеновые соединения. Взаимодействие этих компонентов приводит к образованию сложных пространственных структур и экстремальному изменению физико-химических свойств нефтяных систем, поэтому выявление и изучение особенностей механизма этих взаимодействий представляют большой практический интерес. В настоящем разделе рассматриваются результаты экспериментов по изучению межмолекулярных взаимодействий в модельных двух- и трехкомпонентных смесях углеводородов различных классов. [c.148]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    Реально существующая в поле простая цепочечная структура является в то же время удобной физической моделью более сложных трехмерных коагуляционных структур, на которой можно легко понять механизм течения тиксот-ропных систем, причину неньютоновских свойств, связь этих свойств с устойчивостью и другими коллоиднохимическими параметрами дисперсной системы. [c.205]

    Возможность проявления сил молекулярного сцепления между частицами, необходимых для образования сплошной пространственной сетки, значительно повышается при условии достаточно высокой дисперсности и при частицах анизодиаметрической формы, т. е. с резко различными размерами по отдельным направлениям (пластинчатых или палочкообразных, вытянутых частицах). Предполагая для анизодиаметрических частиц различную толщину адсорбционного сольватного слоя и возможность его утоньшения и прорыва в местах наибольшей кривизны— углах и ребрах, можно прийти к заключению о наличии условий, благоприятствующих сцеплению и агрегированию частиц. В этих случаях достаточно весьма малое объемное содержание дисперсной фазы для того, чтобы частицы могли войти а соприкосновение друг с другом концами или ребрами и образовать сплошную пространственную сетку, обладающую известной механической прочностью. Такой процесс часто называется лиофильной коагуляцией, чем подчеркивается коагуляционный механизм образования.таких рыхлых скелетов структур, в отличие от компактных структур, образующихся при л иофобной коагуляции, а также при осаждении первичных, не агрегированных частиц. [c.252]

    Важную роль в развитии физико-химической механики сыграли работы, выполненные в Институте коллоидной химии и химии воды АН УССР и других учреждениях г. Киева. Ф. Д. Овчаренко, Н. Н. Круглицкий, С. П. Ничипоренко и другие предложили способы регулирования механических свойств и устойчивости глинистых дисперсий, а также методы составления керамических масс применительно к требованиям технологии. На основании изучения механизма образования коагуляционных структур некоторых глинистых минералов в присутствии электролитов и действии температур, установлена высокая термосолеустойчивость их водных дисперсий (Ф. Д. Овчаренко, [c.10]

    Мембраны изготовлены методом двойной коагуляционной ванны , основанном на использовании различий в механизмах процесса фазового распада полимерного раствора. Материалом мембраны являлся полиэфирсульфон, а модельной системой uia изучения процесса иервапорации - смесь аода -изопропи ловый спирт. [c.136]

    Практически все искусство химической обработки буровых растворов сводится К умению регулировать эти процессы, обеспечивать должный баланс между ними. Обычно коагуляция и пептизация приводят к резко различным консистенциям. Однако общность механизма, управляющего этими процессами, зачастую может обусловить одни и те же результаты. Так, причиной загустевания может быть и коагуляция, и увеличение числа частиц в результате пептизации. Соответственно разжижение может носить коагуляционный характер или быть следствием пептизационного разрушения структур с последующей стабилизацией (стабилизационное разжижение). Коллоидная защита в зависимости от условий также может приводить к загусте-ванию (в пресных средах) пли разжижению (при засолении). Таким образом, изменения консистенции буровых растворов еще ничего не говорят о процессах, их обусловивших. Для этого необходим более глубокий анализ, учитывающий влияние различных взаимодействующих факторов. [c.59]

    Механические свойства структур, образующихся в суспензии, во многом определяют реологическое поведение буровых растворов. Они обусловливают силы, которые удерживают утяжелитель и выбуренный шлам, усилия, необходимые для возобновления- циркуляции (продавочные давления), характеризуют коагуляционные процессы и природу образуюищхся связей. Тем самым изучение механических свойств позволяет глубже проникнуть в физико-химический механизм воздействий на буровые растворы реагентов, электролитов, выбуренной породы, температуры. [c.240]

    Еще Г. Фрейндлих отмечал особую чувствительность тиксотропных золей к примесям. Восемнадцатичасовой контакт золгя окиси железа с серебряной пластинкой сократил период тиксотропного застывания приблизительно в 30 раз. Большое влияние оказывает на это характер среды. Снижение pH золей окиси железа с 3,86 до 3,11 увеличило время застывания с 82 до 9000 с. Причину усиления тиксотропии мы видим в поверхностном растворении металла и ионном обмене. В пределах диффузного слоя накапливаются перешедшие в раствор ионы, вызывающие ортокинетическую коагуляцию и упрочнение пограничных слоев. Проверка этих представлений при измерениях прочности структур методом тангенциального смещения пластинки показала, что при платиновой пластинке прочность минимальна — 448 дин/см , при переходе к медной пластинке увеличивается до 559 дин/см , а с алюминиевой — до 736 дин/см и более. Аналогичный механизм имеют и,другие случаи взаимодействия глин с металлическими поверхностями. При этом на них образуются характерные коагуляционные сгустки, иногда окрашенные, например, у поверхности раздела с железом. Пластинки, извлеченные из суспензии, покрыты налипшим глинистым слоем, тем большим, чем выше электролитическая активность металла и чем длительнее пребывание их в суспензии. Особенно сильно налипание на алюминии. В слабощелочных суспензиях алюминиевые пластинки в результате обрастания коагулированной глиной приобретают шарообразную форму. [c.245]

    Более важными являются те особенности систем с минимально возможным значением фрактальности, которые могут быть основанием для ревизии самой целесообразности применения фрактального метода в описании состояния дисперсной системы. Следует учесть, что объем, занимаемый фрактальной флокулой, приравнивается к объему описанной вокруг нее сферы. Применительно к простым линейным цепочкам такой подход может быть оправдан, если их ориентация случайна и непостоянна. Тогда действительно они в своем движении, например при вращательной диффузии, очерчивают вокруг себя сферическую полость, которую они якобы всю и всегда занимают. В то же время реально существуют дисперсные системы, в которых ориентация линейных цепей параллельна и неизменна. Это, в частности, линейная цепочечная структура, возникающая при действии магнитного или электрического поля на соответствующие дисперсные системы. В концентрированном коллоидном растворе ферромагнетика расстояния между соседними параллельными цепями могут быть намного меньше их длины. Поэтому нельзя считать, что каждая цепь занимает такой же объем, как сфера с диаметром, равным длине цепи. Главное же обстоятельство состоит в том, что геометрия линейных цепочек настолько проста и предсказуема, что отпадает всякая необходимость рассматривать их как фрактальные объекты. В историческом плане это также оправдано, поскольку основополагающие идеи теоретической реологии, связанные с введением в практику уравнений структурного состояния в потоке, были выдвинуты и развиты [6] на примере цепочечной модели коагуляционных структур задолго до того, как были осознаны и стали применяться возможности фрактальной геометрии в описании коллоидов. В силу геометрической на1 лядности цепочечная модель позволяет со всей необходимой полнотой понять механизм важнейших реологических эффектов структурирования, поэтому ниже она будет рассмотрена отдельно и детально. Примечательно, что, оставаясь альтернативой фрактальной модели, цепочечная модель дает практически те же результаты, что и фрактальная. Поэтому она может одновременно считаться и частным случаем фрактальной модели. Примечательно, что, оставаясь альтернативой фрактальной модели, цепочечная модель дает результаты, которые в некоторых аспектах сходны с [c.712]

    Коагуляционная сетка и ее фрагменты в действительности имеют конечную проницаемость для потоков среды, которая далее будет характеризоваться г.тубиной проникновения 5 потоков в глубь сетки. Это обстоятельство следовало бы, так или иначе, учесть и во фрактальной и в цепочечной моделях тиксотропных систем. Однако более наглядно роль конечной проницаемости проявляется при рассмотрении еще одного механизма течения коагуляционной структуры — ее послойного скольжения. Для этого рассмотрим тонкий, плоский, прочный и пористый слой структурированной суспензии, заключенный между двумя пластинами (стенками прибора), одна из которых неподвижна, а другая движется параллельно первой с некоторой скоростью и (рис. 3.105). Толщина слоя суспензии И равна расстоянию между пластинами, если он не разрушается при взаимном движении пластин. В общем же случае пространство между пластинами заполнено плоскими, движущимися параллельно друг другу слоями меньшей толщины, чем к. Их суммарная толщина по-прежнему равна Ь. [c.717]

    Первый случай не специфичен для коллоидов, так как аналогичен фазовым переходам в молекулярных растворах. Его разновидностям, приводящим к образованию периодических структур, посвящена прекрасная монография Ефремова. Поэтому мы не включили этот случай в книгу. В ней рассмотрен почти исключительно третий случай. Это объясняется тем, что второй случай, например старение золей, отвечает процессам, представляющим несравненно меньший практический интерес вследствие обычно медленного протекания, и несравненно меньший теоретический интерес вследствие простоты механизма и его трактовки. Наоборот, устойчивость коллоидов, связанная с резко замедленной коагуляцией, имеет разнообразные практические применения большого значения, и ее теория породила целую область фундаментальных разработок. Эти разработки связаны с изучением свойств тонких прослоек и действующих в них сил. Можно сказать, что исследования коагуляционной устойчивости коллоидов способствовали созданию новой науки - науки о поверхностных силах и их проявлениях в свойствах тонЙЭВБДр молекулярных слоев. В свою очередь изыскания в этой Н(в( й6М ВМЯ№ Знания дали вклад и в смежные науки учения о молекулярнБй в %( ки их кристаллах, электрохимию, теорию массопереноса, некогорьИ ШДеш неравновесной термодинамики, биофизику, гидротехнику и почвоведение, учение о земной коре. Поэтому было естественно объединить в одной книге проблему устойчивости коллоидов и тонких пленок. [c.3]


Библиография для Механизм коагуляционный: [c.54]   
Смотреть страницы где упоминается термин Механизм коагуляционный: [c.181]    [c.108]    [c.84]    [c.184]    [c.203]    [c.13]    [c.133]    [c.546]    [c.143]    [c.260]   
Высокодисперсное ориентированное состояние полимеров (1984) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Коагуляционный механизм лакообразования

Механизм разрушения коагуляционных структур в стационарном потоке и при вибрации



© 2025 chem21.info Реклама на сайте