Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные соединения физическая характеристика

    Выше обсуждались вопросы, связанные с выяснением молекулярной структуры нефтяных асфальтенов вне зависимости от молекулярной структуры нефтяных смол. Между тем, в предыдущих главах мы неоднократно подчеркивали генетическую связь этих не-углеводородных высокомолекулярных соединений нефти. Рассмотрим теперь наличие общности и различия в строении молекул смол и асфальтенов, так же как мы сделали это в случае их элементного состава. Д. Эрдман в одной из своих работ [14] рассмотрению структурно-молекулярных вопросов смолисто-асфальтеновых веществ нефти предпослал характеристику их химического состава. Смолы и асфальтены, но мнению Эрдмана, представляют собою смеси высокомолекулярных неуглеводородных соединений нефти, в которых содержатся такие гетероэлементы, как кислород, азот и сера, а также небольшие количества ванадия и никеля. Используя большой комплекс физических методов для изучения углеродного скелета и соотношения в нем атомов углерода различной природы (ароматический, нафтеновый, парафиновый) в молекулах смол и асфальтенов, выделенных из сырых нефтей, природных асфальтенов и продуктов высокотемпературной переработки нефти, многие исследователи при решении принципиальных вопросов пришли к аналогичным выводам. В работах Эрдмана сделаны некоторые обобщения этих экспериментальных результатов. Важное научное значение имеет положение о том, что молекулы смол и асфальтенов состоят из нескольких плоских двухмерных пластин конденсированных ароматических и сферических нафтеновых структур, б.тиз-ких но своему строению. Принципиальное различие между смолами и асфальтенами, проявляющееся в различной их растворимости [c.98]


    Структура и содержание второго издания книги претерпели существенные изменения. Главы II (Методы разделения высокомолекулярных соединений нефти) и X (Физические свойства смол и асфальтенов) совсем исключены, так как за последние годы появились специальные издания, в которых подробно описаны методы разделения, выделения и характеристики соединений, близких по свойствам к высокомолекулярной части нефти. Значительно дополнены новым материалом главы, посвященные углеводородам и асфальтенам. Радикально переработана глава о сераорганических соединениях, в которую вошло большое количество новых данных по избирательному каталитическому гидрированию сераорганических соединений нефти. Остальные главы книги мало изменились по сравнению с первым изданием, хотя и в них внесены некоторые дополнения и редакционные изменения. Заново написаны введение и [c.3]

    Из краткой характеристики специфических свойств высокомолекулярных соединений нефти видно, что эта группа веществ по химическому составу и строению, а также по размерам и неоднородности молекул резко отличается от низкомолекулярных соединений нефти, состоящих преимущественно из углеводородов. Для исследования высокомолекулярных соединений нефти неприменима большая часть классических методов, успешно используемых при изучении углеводородного состава бензино-керосиновых частей нефти. При разделении и исследовании наиболее тяжелой части нефти во много раз возрастает значение физических и физико-химических методов, которые позволяют изучать природу и свойства ее, не вызывая существенных химических изменений в объектах исследования. Именно физические и физико-химические методы разделения и исследования сыграли решающую роль в развитии химии высокомолекулярных органических соединений, определив возможность быстрого ее расцвета и выделения в самостоятельную область химической науки. Такую же роль призваны сыграть современные [c.15]

    Физические характеристики полимерных материалов, свойства растворов и расплавов полимеров определяются не только молекулярной массой и полидисперсностью данного высокомолекулярного соединения, но и химическим и пространственным (стерическим) строением полимерной цепи, ее гибкостью, а также способами ее ассоциации с соседними макромолекулами. [c.122]

    Общая характеристика высокомолекулярных соединений (ВМС) 66I 12.2. Вода, ее физические и химические свойства 676 [c.726]

    В настоящем издании существенно расширен раздел, посвященный характеристике высокомолекулярных соединений и полимерных материалов на их основе (канд. хим. наук В. И. Векслер). Значения относительных атомных масс (атомных весов) приведены в со ответствие с данными Комиссии по атомным весам ИЮПАК на 1977 г. кроме того, в конце книги помещена четырехзначная таблица относительных атомных масс, рекомендованная Комитетом по химическому образованию ИЮПАК. Значения фундаментальных физических констант и определения основных единиц Международной системы (СИ) взяты нз официального издания Фундаментальные физические константы . М., Изд-во стандартов, 1976, [c.8]


    Биополимеры - это высокомолекулярные соединения, синтезируемые живыми организмами. Некоторые из них обладают ценными физическими и химическими свойствами и могут использоваться в пищевой, перерабатывающей и фармацевтической промышленности. С возникновением технологии рекомбинантных ДНК появилась возможность создавать новые биополимеры, заменять синтетические продукты их биологическими аналогами, модифицировать уже существующие биополимеры с целью улучшения их физических и структурных характеристик, повышать эффективность соответствующих промышленных процессов, уменьшать их стоимость. [c.266]

    Метод титрования в неводных растворах широко применяют для определения функциональных концевых групп высокомолекулярных соединений при установлении молекулярного веса. Молекулярные веса являются одной из основных характеристик таких соединений, так как физические и химические свойства полимеров находятся в прямой зависимости от размера их молекул.  [c.173]

    Приведенные данные по химической и физической характеристике высокомолекулярных продуктов превращения углей, равно как и данные о структурах индивидуальных соединений, выделенных из продуктов деструкции, а также данные о функциональных группах и структурных элементах ОМУ, рассмотренные ранее в разд. 4.1, приводят к современным представлениям о молекулярной структуре ОМУ в целом. [c.101]

    Молекулярные веса и степень полидисперсности относятся к основным характеристикам высокомолекулярных соединений, так как физические и химические свойства полимеров находятся в прямой зависимости от размера их молекул, построенных по определенному типу. [c.3]

    Физическая химия полимеров в настоящее время вполне определилась как самостоятельный раздел физической химии, с одной стороны, и химии высокомолекулярных соединении, с другой. Этот раздел современной химии можно рассматривать как физическую химию процессов полимеризации и поликонденсации (с традиционным изучением кинетики реакций и катализа) и как физическую химию растворов и твердых полимеров, связывающую физические характеристики растворов и твердых полимеров с их химическим строением. [c.3]

    Кроме коллоидных систем рассмотренных типов, известно много веществ, представляющих собой естественные золи и студни без всякого предварительного измельчения. К этой группе веществ относятся белки, крахмалы, декстрины, каучуки, эфиры целлюлозы и многие другие соединения. Общей характеристикой этих веществ является их сложное высокомолекулярное строение. Эти вещества обладают настолько большими молекулярными весами, что их трудно определить обычными методами физической химии (понижением упругости пара растворов, криоскопией, эбулиоскопией). [c.11]

    Из органических высокомолекулярных соединений построено большое количество биологически и технически важных веществ. К ним относятся вещества, из которых состоят растения и природные волокна,— целлюлоза и другие полисахариды, шерсть, шелк к ним принадлежат также коллаген и эластин, основная часть белков — протеиды и нуклеотиды, гликоген и крахмал, натуральные полипрены — каучук и гуттаперча. Синтетические высокомолекулярные соединения охватывают область пластических масс и синтетических волокон. Химия высокомолекулярных соединений изучает методы синтеза, характеристики и исследования этих веществ, а также превращения природных и синтетических полимеров в их производные. Если учесть значение перечисленных выше соединений, то представляется обоснованным выделение химии высокомолекулярных органических соединений в особую область органической химии. В строении макромолекул полимеров, а также в их химических и физических свойствах и в методах идентификации и характеристики этих соединений имеется столько особенностей, что необходимо самостоятельное рассмотрение этих вопросов. Однако следует учесть, что как для высокомолекулярных, так и для низкомолекулярных органических соединений в основном характерны одни и те же типы связи атомов в молекуле. Таким образом, все законы органической химии в полной мере относятся также и к химии высокомолекулярных соединений. [c.11]

    Анализ высокомолекулярных соединений предусматривает определение ряда физических характеристик полимеров растворимости, температуры размягчения или плавления, температуры каплепадения, полидисперсности полимеров, молекулярного веса, а также химический анализ, включающий элементарный анализ, качественное и количественное определение примесей мономерных органических продуктов. [c.194]

    Физические свойства гетероцепных сложных полиэфиров, как и всех других высокомолекулярных соединений, изменяются в широком диапазоне в зависимости от строения макромолекулы. Важными в этом отношении особенностями строения макромолекул являются те из них, которые оказывают влияние на способность полимерных молекул к кристаллизации, т. е. упорядочиванию не менее существенным является гибкость молекулы и, наконец, наличие сил между макромолекулами, возникающих в результате полярного влияния, водородных связей и т. п. Как влияют различные особенности строения цепи на перечисленные выше факторы, мы рассмотрим отдельно в разделе Зависимость свойств полиэфиров от строения цепи здесь же лишь ограничимся указанием на то, что изменение строения макромолекул вызывает и соответствующее изменение физических свойств полимера. Среди этих свойств особенно важными являются растворимость, свойства растворов, молекулярный вес, фракционный состав, температура плавления, оптические свойства, способность к кристаллизации и ориентации, электрические и механические свойства. Перечисленные выше характеристические качества в первую очередь определяют возможность практического использования того или иного полиэфира в различных областях техники и поэтому знание их имеет особенно существенное значение. Ниже мы рассмотрим подробнее имеющиеся в литературе материалы по методике определения указанных свойств, а также приведем конкретные характеристики полиэфиров. [c.242]


    Строение молекул высокомолекулярных соединений определяет как их химические свойства, так и многие физические характеристики. Весь комплекс технических и технологических свойств полимерных материалов зависит в конечном итоге от химического состава Мономерных звеньев, их взаимного расположения, а также строения отдельных молекул. Полимеры, обладая одинаковым строением звена, могут значительно отличаться по физическим свойствам вследствие неоднородности состава, различного характера расположения звеньев и т. д. Поэтому важное значение приобретает изучение не только химического состава полимерных веществ, но и их физической структуры, строения отдельных молекул, особенностей их взаимодействий, возможностей пространственного расположения и т. д. Этот круг вопросов охватывает один из разделов науки о полимерах — физико-химия высокомолекулярных соединений. [c.24]

    Все отличия свойств полимеров от свойств низкомолекулярных соединений обусловлены их исключительно высоким молекулярным весом. Полимеры состоят из макромолекул различной степени полимеризации, т. е. все полимеры являются веществами полидисперс-ными, или полимолекулярными. Полидисперсность полимеров описывается функцией молекулярно-весового распределения (МБР). Чем сильнее отличаются по молекулярному весу отдельные макромолекулы полимера, тем выше его полидисперсность, шире его молекулярно-весовое распределение. Средний молекулярный вес и характер МВР полимера — это важнейшие молекулярные параметры, обусловливающие многие физические свойства высокомолекулярных соединений. Существует несколько способов усреднения молекулярного веса. Важнейшими характеристиками полимера являются среднечисловой и средневесовой молекулярные веса. [c.31]

    Поведение высокомолекулярного соединения в различных химических превращениях, его физические характеристики, комплекс технических и технологических свойств определяются химическим составом, строением, молекулярной массой, молекулярно-массовым распределением и взаимным расположением молекул полимера. [c.13]

    Фракция тяжелого жидкого масла с интервалом кипения 204—450 °С сходна по физическим и химическим характеристикам с топливным маслом № 6. Ее можно рассматривать как сырье для получения бензина, топлива для стационарных турбин и очищенных топливных масел (с низким содержанием серы и азота). Вследствие высокого содержания в этом сырье ароматических соединений его переработка в турбинное и дизельное топливо, для которых необходимо значительное содержание парафиновых компонентов, является нерентабельной. Однако несколько более глубокая переработка может превратить его в легкую ароматическую композицию, пригодную для использования в качестве компонента турбинного или дизельного топлива. Переработка в бензин, турбинное топливо и очищенные топливные масла связана с необходимостью решения двух основных проблем обеспечение селективного крекинга высокомолекулярных многоядерных ароматических соединений с образованием легких ароматических продуктов и уменьшение до приемлемого уровня содержания гетероатомных соединений. [c.175]

    Мы попытались в настоящем обзоре познакомить читателей со всем богатством теоретических подходов и разнообразием расчетных методов, которые используются в последнее время при описании статистики разветвленных и сетчатых полимеров. Все эти методы в большей или меньшей степени связаны с представлением полимерных молекул в виде графов, которые позволяют формализовать многие задачи химии и физики высокомолекулярных соединений. Общей их особенностью является то, что все экспериментально наблюдаемые характеристики полимеров представляют собой некоторые средние по конфигурационно-конформационному набору молекул полпмерного образца. Поэтому с необходимостью возникают задачи усреднения в ансамбле случайных графов, помещенных в трехмерное пространство. Вероятностная мера на множестве этих графов в случае равновесных систем задается распределением Гиббса и однозначно определяется выбранной физико-химической моделью. Современные ее варианты, учитывающие внутримолекулярную циклизацию и объемные физические взаимодействия, требуют привлечения для расчетов статистических характеристик полимеров новых подходов. Наиболее эффективными здесь являются, по нашему мнению, методы теории ноля, широкие возможности которых показаны в разд. IV. Здесь снова химическая физика полимеров вынуждена взять на вооружение графы, поскольку рабочим языком теорпи поля служит диаграммная техника. Можно с уве- [c.291]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    Рассматривая технологию пластических масс как самостоятельную научную дисциплину, автор всемерно старался выдвинуть те научные принципы, которые должны быть положены в ее основу. Поэтому в первых главах книги изложены химические и физические основы технологии пластмасс. При рассмотрении же вопросов, относящихся непосредственно к технологии тех или иных видов пластических масс, возможно большее внимание уделялось характеристике закономерностей реакций, вед одих к получению высокомолекулярных соединений, их химическому строению и зависимости комплекса физико-механических и химических свойств поли- [c.9]

    Характеристика химических соединений обычно проводится на изолированных молекулах, т. е. в растворах. Для соединений, существующих только в одном агрегатном состоянии, эта возможность исключается такие полимеры исследуют в твердой фазе, причем их нельзя предварительно очищать по вышеописанной методике. Поскольку многие технически важные полимерные материалы принадлежат к этому классу, ниже будут особо рассмотрены возможности исследования полимеров в твердом состоянии и механические испытания этих веществ. Однако по данным элементарного анализа и путем изучения продуктов распада, образующихся при термическом или химическом распаде, можно делать обоснованные выводы о строении одноагрегатных соединений. Но детальная характеристика высокомолекулярных соединений возможна только при наличии дискретных частиц, т. е. в растворах, причем исследование должно проводиться на веществах, подвергнутых очистке переосаждением. Поэтому вначале будут рассмотрены возможности характеристики высокомолекулярных соединений в растворах, причем в химии полимеров большое значение имеют физические методы. [c.128]

    У нас в СССР часть проводившихся в этом направленпи исследований оказалась тесно связанной с изучением аморфного состояния вообще и в частности с изучением физических свойств органических, легко переохлаждающихся низкомолекулярных жидкостей. Эти две группы веществ имели ряд общих черт аморфность строения, общность многих молекулярно-кинетических закономерностей, тождество разнообразных релаксациой-ных процессов. Переход в неравновесное твердое аморфное состояние при низких температурах оказался одинаково характерным для большой группы низкомолекулярных и высокомолекулярных соединений. Установление того, что аморфное строение является важнейшей структурной характеристикой высокополи-меров, что высокоэластическое состояние полимеров является [c.3]

    Органические соединения элементов I группы 164 2. Органические соединения элементов II группы 165 3. Органические соединения элементов III группы 167 4. Органические соединения элементов IV и V групп 168 5. Кремнийорганические соединения 69 6. Сравнительная характеристика свойств углерода и кремния 170 7. Классификация и номенклатура 172 8. Способы получения 174 9. Физические свойства мономерных кремнийорганических соединений 176 10. Химические свойства кремнийорганических мономеров 177 11. Высокомолекулярные кремнийорганические соединения (полиорганосилоксаны, или силиконы) 178 12. Гидрофобизирующие свойства кремнийорганических соединений 180 13. Гидрофобизация строительных материалов и сооружений. Применение кремнийорганических соединений в производстве стройматериалов 181 [c.426]


Смотреть страницы где упоминается термин Высокомолекулярные соединения физическая характеристика: [c.418]    [c.162]    [c.329]    [c.329]    [c.329]    [c.233]    [c.202]    [c.17]    [c.247]   
Химия высокомолекулярных соединений (1950) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения



© 2024 chem21.info Реклама на сайте