Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация, методы определения оболочки

    Собственно химической связью с центральным ионом соединены молекулы растворителя Зп, находящиеся в первой сольватной оболочке. Однако в сферу влияния этого иона входит по крайней мере еще два сольватных слоя. Схема (1—68), в частности, поясняет причину неоднозначных литературных данных относительно чисел сольватации (гидратации) ионов [173, с. 172]. Это обусловлено тем, что различные методы определения чисел сольватации фиксируют разное число сольватных слоев, причем далеко не всегда ясно, даже по модели, положенной в основу метода, какое именно. [c.52]


    Один из распространенных методов определения чисел сольватации состоит в том, что к раствору электролита добавляют неэлектролит, т. е. вещество, которое не переносится током (чаще всего сахар). В первом приближении можно считать, что сахар не вступает в сольватную оболочку. Тогда, если одновременно с наблюдением за изменением концентрации электролита проследить за изменением концентрации сахара, можно установить количество воды, переносимое ионами. Концентрация сахара либо будет уменьшаться, если количество принесенной воды будет превышать количество унесенной, либо увеличиваться, если будет обратное соотношение. [c.169]

    В результате процесса сольватации в растворе должны присутствовать не свободные ионы, а ионы с сольватной оболочкой. Бокрис и Конвей (1954) различают первичную и вторичную сольватную, оболочки. В первую из них включены молекулы растворителя, прочно связанные с ионом и перемешающиеся вместе с ним. Во -вто-рую —все молекулы воды, состояние которых отличается от их, состояния в чистом растворителе. Для многих электрохимических процессов важно знать, сколько молекул растворителя входит во внутреннюю сольватную оболочку. Это количество молекул называется.сольватации п, или в случае водных растворов, числом гидратации ионов пп. Они имеют относительное значение и дают ориентировочные сведения о количестве молекул воды, входящих во внутренний слой. Различные методы определения чисел гидратации приводят к значениям, существенно отличающимся друг от друга. В методе Улиха предполагается, что образование внутреннего гидратного слоя подобно процессу замерзания воды. Такое представление разделяют и многие другие авторы. Эли и Эванс, например, сравнивают сольватный слой с микроскопическим айсбергом, сформировавшимся вокруг частицы растворенного вещества. Так как уменьшение энтропии при замерзании воды составляет 6 кал моль-град, то число гидратации [c.79]

    Позднее Н. А. Измайлов и Ю. А. Кругляк (1960) отметили линейную зависимость изобарных потенциалов и энтальпий сольватации от 1/ , где п — главное квантовое число внешней электронной оболочки ионизированного атома . На основании этой зависимости Измайлов разработал метод определения энергий сольватации отдельных ионов, основанный на том, что разность величин энергий сольватации изоэлектронных ионов галогенов и щелочных металлов стремится к нулю, когда 1п - 0. [c.92]


    Молекулы растворителя, входящие в сольватную оболочку, в различной степени связаны с ионом в зависимости от удаленности от иона. Неудивительно, что различные методы определения сольватации, основанные на изучении различных свойств растворов, дают различные значения чисел сольватации для одного и того же иона в одном и том же растворителе. Напомним ставший уже классическим пример чисел гидратации иона Ы+, колеблющиеся от 120 до 5—4 [1]. Это объясняется тем, что одни из свойств чувствительны только по отношению к сильно связанным молекулам растворителя, а другие — и к менее связанным. [c.43]

    Как правило, числа сольватации, полученные различными методами, плохо согласуются. Плохая согласованность, не говоря уже об экспериментальных трудностях, отражает различия в моделях, используемых для определения чисел сольватации, а также в основных допущениях, принятых в этих моделях. К сожалению, модели с двумя состояниями растворителя являются очень грубыми приближениями. Даже для сильно гидратированных ионов с относительно несжимаемой первой гидратной оболочкой воздействие на более удаленные молекулы воды не сводится только к одной электрострикции. Сильно гидратированный ион, такой, как влияет на достаточно удаленные молекулы воды и вызывает некоторое возмущение внешней гидратной оболочки, возможно даже усиливает сжимаемость этой части растворителя. На современном этапе исследования структуры растворов ценность дальнейшего изучения чисел гидратации находится под большим вопросом, поскольку они сложным образом зависят от различных взаимодействий типа ион - растворитель, для которых пока не имеется достаточно адекватной модели. [c.444]

    Основной вопрос, который стоит при определении теплот и энергий сольватации ионов, заключается в том, как разделить полученный суммарный эффект на теплоту или энергию сольватации аниона и катиона. Все методы разделения, которые были предложены до сих пор, имеют свои недостатки и к ним нужно относиться критически. В свое время было предложено делить теплоту гидратации КС1 поровну. Это предложение основывалось патом, что ионы калия и хлора имеют изо-электронные оболочки. Если от калия отделить один электрон [c.301]

    Если рассмотренное вещество — сильный комплексообразова-тель, в результате сольватации может произойти существенная перестройка внешних электронных оболочек его атомов и ионов, часто приводящая к образованию сольватных донорно-акцепторных комплексов. Методы ЯМР-, ЭПР-спектроскопии и рентгеноструктурного анализа с очевидностью доказывают, что в этих случаях сольватные комплексы имеют чисто химическую природу, обладают конечными размерами и определенным стехиометриче-ским составом в зависимости от природы растворителя. Сольватация с частичным или полным переносом заряда от растворенного вещества к растворителю, или наоборот, — чрезвычайно распространенное явление. [c.88]

    Определение сольватных объемов из измерений вязкости растворов полимеров одно время было очень распространенным методом. Объясняется это тем, что высокую вязкость растворов полимеров пытались объяснить большими сольватными оболочками, создающимися вокруг мицелл. Как будет показано в главе IX, сольватация вообще не может являться объяснением большой вязкости растворов полимеров, и зависимость удельных вязкостей от природы растворителя объясняется не различными сольватными оболочками, а различной формой, которую длинные цепи принимают в различных растворителях. [c.146]

    Растворитель в сольватной оболочке обладает меньшей упругостью пара, худшей растворяющей способностью, пониженной сжимаемостью, более низкой диэлектрической постоянной, повышенной плотностью и т. д. Любое из этих свойств растворителя в сольватной оболочке может быть использовано для установления степени сольватации, однако наилучшие результаты дает прямой метод, состоящий в непосредственном определении тепла, выделяющегося при сольватации. [c.373]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]


    В результате процесса сольватации в растворе должны присутствовать не свободные ионы, а ионы с сольватной оболочкой. Бокрис и Конвей Bo kris, onway, 1954) различают первичную и вторичную сольватную оболочки. В первую из них включены лишь те молекулы растворителя, которые прочно связаны с ионом и перемещаются вместе с ним. Во вторичную оболочку — все молекулы воды, состояние которых отличается от их состояния в чистом растворителе. Для многих электрохимических процессов важно знать, сколько молекул растворителя входит во внутреннюю сольватную оболочку. Это количество молекул называется числом сольватации Пв или, в случае водных растворов, числом гидратации ионов л ft. Эти числа имеют относительное значение и дают лишь ориентировочные сведения о количестве молекул воды, входящих во внутренний слой. Различные методы определения чисел гидратации приводят к значениям, которые значительно отличаются друг от друга. [c.79]

    Естественно, что ни один из методов не обладает достаточной универсальностью, чтобы дать полное описание такого сложного процесса как сольватация. Достаточно сказать, что отсутствие однозначных методов определения четкой границы между первичной и вторичной сольватными оболочками, отмечавшееся в гл. VI, приводит к значительному расхождению даннщ о чис- [c.184]

    Основной вопрос, которы возникает при определении теплот (и энергий) сольватации ионов, заключается в том, как разделить полученный суммарный эффект на теплоты (и энергии) сольватации аниона и катиона. Все методы разделения, которые были предложены до сих пор, имеют свои недостатки, и к ним нужно относиться критически. В свое время было предложено делить теплоту гидратации КС поровну. Это предложение основывалось на том, что ионы калия и хлора имеют изо-электронные оболочки. Если от калия отделить один электрон и присоединить егОчК хлору, то у каждого иона будет по 18 электронов. В дальнейшем этот прием был подвергнут критике на том основании, что, хотя оболочки этих ионов изоэлектронны, радиус иона калия меньше радиуса иона хлора. [c.185]

    Сольватацией называется такое взаимодействие растворенного вещества с растворителем, которое приводит к более низкой активности растворителя вблизи частиц растворенного вещества по сравнению с чистым растворителем. В случае водных растворов сольватация называется гидратацией. Гидратация ионов обусловлена ориентацией дипольных молекул воды в электрическом поле иона, а гидратация полярных групп — в молекулах неэлектролитов и полимеров— ориентацией молекул воды в результате взаимодействия диполей и образования водородных связей. В гидратном слое молекулы воды располагаются более упорядоченным образом, но остаются химически неизмененными, чем гидратация отличается от химического соединения с водой окислов металлов и ангидридов кислот. Благодаря постепенному падению энергии связи растворенного вещества с растворителем (по мере удаления от молекулы растворенного вещества), сольватный слой имеет несколько диффузный характер, но в основном энергия взаимодействия и наибольшее падение активности растворителя сосредоточены в первом молекулярном слое. Растворитель в сольватной оболочке обладает, меньшей упругостью пара, меньшей растворяющей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т.,д. изменение любого из этих свойств раствора может быть использовано для определения величины сольватации. Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью например, Каргин и Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя на одну полярную группу — ОМОг полимера (табл. 15). Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания (см. стр. 78), в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым [c.173]

    Существуют разные способы определения числа сольватаций к и (или) радиуса первичной сольватной оболочки, например I) сопоставление значений истинных и кажущихся чисел переноса ионов 2) определение стоксовского радиуса ионов [уравнение (10.23)] 3) измерение сжимаемости раствора [в присутствии ионов из-за уменьшения удельного объема воды (элект-рострикции воды) уменьшается ее коэффициент сжимаемости] и др. Точность этих методов не очень велика. [c.183]

    В первом томе (см. разд. II-6A— Е) рассматриваются формальное обоснование и экспериментальное подтверждение теорий, основанных на представлениях о л-электронах обсуждаются природа л-электронного приближения, предсказания электронных спектров и распределение заряда в гетеромолекулах. Эффекты сольватации рассматриваются в т. 2. В разд. III-4 т. 1 дан обзор экспериментальных данных по синглет-триплетному разделению и их теоретическое рассмотрение. Эх-гспериментальное определение дипольных моментов органических молекул, находящихся в воз-буяеденных состояниях, обсуждается в разд. III-3 т. 1. Эти величины могут быть использованы для сравнения с результатами расчетов возбул денных состояний по методу МО с открытыми оболочками. Экспериментальные данные приведены для растворов. Кроме того, недавно для газообразного состояния были измерены дипольные моменты сравнительно небольших молекул (подобных формальдегиду), находящихся в возбужденном состоянии. [c.11]

    Интересно отметить, что определенные разными методами значения свободных энергий переноса ионов из воды в спирт и в смеси воды со спиртом или диоксаном хорошо согласуются с тем, что свободные энергии переноса катионов и анионов противоположны по знакам и в этом отношении протон ничем не отличается от других катионов. Франкс и Айвс [44] считают это доказательством полной несостоятельности подхода Борна и полагают, что свободная энергия переноса ионов в основном определяется близко действующими взаимодействиями. Совершенно ясно, что по одному лишь уравнению Борна нельзя рассчитать свободную энергию переноса. Однако мнение Франкса и Айвса о том, что уравнение Борна приемлемо только для определения электростатической (кулоновской) работы переноса иона из среды с одной диэлектрической постоянной в среду с другой диэлектрической постоянной, следует рассматривать как крайность. При переносе иона из одного растворителя в другой на электростатическую энергию накладывается энергия сольватации, которую модель Борна вообще не учитывает. В работе Нойеса [43] подчеркивается, что различия в строении сольватных оболочек катионов и анионов существенны. [c.337]

    Недавно было показано, что методом ЯМР можно получить определенные числа сольватации некоторых катионов металлов в воде [79], метаноле [80], жидком аммиаке [81], К,К-диметилформамиде [82] и диметилсульфоксиде. Для иона Mg в жидком аммиаке было получено необычное число сольватации, равное пяти [81]. Установлено, что в метаноле в первичной сольватной оболочке иона магния с каждым ионом магния связано шесть молекул растворителя. Так как для аммиака получен сигнал только лорентцевой формы, можно полагать, что между неэквивалентными молекулами аммиака происходит быстрый обмен. Полагают, что наиболее важным фактором, который приводит к образованию пентааммиаката магния, должно быть выраженное образование ионных пар, которое, как известно, происходит в жидком аммиаке [81]. [c.48]

    Наиболее прямой метод измерения сольватации состоит в установлении теплового эффекта поглощения навеской полимера определенного количества растворителя из смеси последнего с инертной к полимеру жидкостью. Например, В. А. Каргин и С. П. Папков определили, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около одной молекулы растворителя на одну полярную группу — ОЫОг полимера. Думанский и Некряч определили гидратацию ряда полимеров по теплоте смачивания, в частности, для крахмала найдено, что на глюкозный остаток приходится 3 молекулы связанной воды. А. В. Думанский установил также, что связывание воды самыми различными веществами происходит с тепловым эффектом около 80 тл на 1 г связанной воды близость этой величины к теплоте замерзания воды (около 85 кал1г) указывает на упорядоченное состояние воды в гидратной оболочке. Булл исследовал гидратацию ряда белков, определяя 5-образные изотермы упругости пара. [c.155]

    Число первичной сольватации может быть определено с помощью различных взаимно независимых методов, хотя необходимо отметить, что эти методы не дают для каждого случая полностью совпадающих значений. Падова [47, 48] вычислил числа сольватации (п) для некоторых электролитов из значений молярных объемов. Он предположил, что растворенный ион образует такое сильное электростатическое поле, что сольватная оболочка, состоящая из молекул растворителя, связанных в первой координационной сфере, становится несжимаемой. Молярный объем К (см моль) сольватированного электролига можно описать с помощью уравнения = Ф + п,(Мо/ о), где Ф - кажущийся молярный объем растворителя, Мо - молекулярная масса, о - плотность. Таким образом, это уравнение пригодно для определения числа сольватации (сольватного числа) п,. [c.28]

    Растворитель в сольватной оболочке благодаря взаимодействию с полимером обладает меньшей упругостью пара, меньшей растворяюш,ей способностью, меньшей диэлектрической постоянной, меньшей сжимаемостью, он труднее вымораживается, обладает большей плотностью и т. д. Изменение любого из этих свойств раствора может быть использовано для определения величины со.льватации. Одним из прямых методов измерения сольватации является измерение теплового эффекта поглощ,ения навеской полимера оиределенного количества растворителя из смеси последнего с инертной к полимеру жидкостью. Этим путем было определено, что сольватация нитроцеллюлозы в ацетоне и пиридине составляет около 1 молекулы растворителя па одну полярную группу—ОКО. полимера (табл. 64). [c.254]


Смотреть страницы где упоминается термин Сольватация, методы определения оболочки: [c.174]    [c.174]    [c.76]    [c.479]    [c.45]    [c.255]    [c.173]    [c.61]    [c.104]   
Физическая химия неводных растворов (1973) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Оболочка

Сольватация



© 2024 chem21.info Реклама на сайте