Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неэквивалентность групп в молекулах

    Асимметрический атом углерода связан с четырьмя неэквивалентными группами в молекуле глюкозы к числу таких атомов принадлежат атомы углерода с номерами от 1 до 5. Как мы уже видели на примере а-углерода аминокислоты (см. рис. 21-12), каждому такому асимметрическому атому [c.308]

    Хиральность — это свойство объекта быть несовместимым со своим зеркальным отображением. Так, например, молекулы, у которых нет зеркально-поворотной симметрии, являются хираль-ными. Молекула называется прохиральной, если она может быть превращена в хиральную единственным изменением какого-либо ее фрагмента. В тех и других молекулах некоторые группы ядер, казалось бы химически эквивалентные, могут быть магнитно неэквивалентными, что проявляется в спектрах ЯМР. Такое явление, называемое диастереотопией ядер, наблюдается по спектрам ЯМР при совмещении в одной молекуле хирального и прохирального фрагментов. [c.36]


    Протоны, входящие в состав одной молекулы, но отличающиеся природой соседних атомов или групп, также отличаются степенью экранирования, а следовательно, и значением напряженности (или частоты, если развертка проводится по частоте), при которой произойдет резонанс. Например, ядра атомов водорода гидроксильных групп метилового спирта менее экранированы, чем ядра протонов метильной группы, а в молекуле этилового спирта имеется уже три группы неэквивалентных протонов. Поэтому в спектре ПМР метилового спирта должно быть два, а этилового спирта — три сигнала (рис. 94). [c.285]

    Вследствие используемого метода наблюдения, обычно химические сдвиги являются единственными параметрами, которые можно извлечь из спектра ЯМР С. Часто в спектре содержится просто единственный сигнал для каждого неэквивалентного атома углерода или группы в молекуле. В качестве примера рассмотрим спектр этилацетата (см. рис. 9.3-9). Четырем ядрам углерода соответствуют четыре сигнала. Наша задача —правильно отнести каждый сигнал к соответствующему типу ядер. Таким образом, знание общих правил, связывающих химические сдвиги с молекулярной структурой, даже более важно в спектроскопии ЯМР С, чем в ПМР. В обсуждении химических сдвигов протонов в предыдущей главе мы рассмотрели некоторые специальные явления, такие, как эффект кольцевых токов и магнитной анизотропии соседней группы, для того, чтобы понять экспериментальные результаты. Мы также упоминали межмолекулярные эффекты, такие, как влияние растворителя и температуры, в частности в связи с химическими сдвигами протонов групп ОН, 8Н, и NH (обмен протонов и водородные связи). В спектроскопии ЯМР на ядрах С все эти эффекты, вьфаженные в м.д., близки по величине к эффектам в ПМР. Следовательно, при рассмотрении суммарных сдвигов в диапазоне около 220 М.Д. они будут менее значимы. С другой стороны, эффекты заместителей, играющие важную роль в спектроскопии ПМР, остаются важными и в случае химических сдвигов ядер С. [c.232]

    У нелинейных молекул в отличие от линейных группы симметрии конечные и могут иметь лишь конечное число неэквивалентных неприводимых представлений. В качестве примера на рис. 2 изображена геометрическая фигура и указаны элементы симметрии, соответствующие молекулам типа СН4 (группа симметрии 7 ). Представления этой группы и примеры функций-партнеров, иллюстрирующие симметрию одно-электронных волновых функций таких молекул, приведены в табл. 1.2. [c.40]


    На рис. 1.9 схематично представлено, как мог бы выглядеть спектр ЯМР системы с тремя неэквивалентными парами ядер Х2—А2— 2, когда их спины равны /г, имеет место спин-спиновое взаимодействие только соседних групп, а константы 1ах=1аг (например, спектр ПМР метиленовых групп молекулы К —СНг— —СНг—СНг—К", в которой и не дают дополнительных [c.26]

    Из сказанного следует, что спектр ядерного резонанса молекулы, обусловленный химическими сдвигами, будет содержать столько резонансных линий, сколько химически неэквивалентных групп ядер данного типа в ней имеется, причем интенсивность каждой линии будет пропорциональна числу ядер в соответствующей группе (рис. 3). [c.74]

    Анализ спектров высокого разрешения может дать информацию о величинах химических сдвигов эквивалентных ядер в молекуле относительно сигнала эталонного вещества, о величинах констант спин-спинового взаимодействия между неэквивалентными группами и об относительных числах эквивалентных ядер в каждой группе. По этим данным можно сделать заключение о структуре и химическом строении изучаемого вещества. [c.139]

    Знание химических сдвигов позволяет идентифицировать различные группы атомов в молекулах, а по распределению интенсивности спектра — определить число неэквивалентных ядер. [c.218]

    Если в молекуле присутствуют протоны, сильно взаимодействующие друг с другом (например, неэквивалентные ге-минальные протоны), то при неполном подавлении спин-спинового взаимодействия С— Н спектр ЯМР С усложняется. Например, в спектре соединения, приведенного на рис. 44, в, проявились триплеты атомов углерода метиленовых групп. [c.100]

    В значительном числе случаев проявляется мультиплетная структура характеристических полос поглощения. Наблюдаемая в ИК-спектрах эпоксидов мультиплетность полос поглощения в области частот валентных колебаний связей С—О и ножничных деформационных колебаний алифатических СН,-фупп объяснена соответственно валентными колебаниями системы С—О—С, взаимодействующими с другими колебаниями молекулы (при наличии простой эфирной связи), взаимодействующими асимметричными колебаниями групп С—С(=0)—О и О—С—С (при наличии сложноэфирной фуппы), наличием в молекуле спектроскопически неэквивалентных СН -фупп, находящихся в различном молекулярном окружении. Тем самым показана возможность ИК-спектроскопической идентификации различных СН,-групп. [c.69]

    НОМ ряду И при Примерно 7100 см в первом обертоне. Частота свободной гидроксильной группы V (ОН) в известной мере зависит от индуктивного эффекта сильно полярных заместителей, располо-. женных по соседству с гидроксильной группой, а также от того, является ли оксигруппа первичной, вторичной или третичной [22, 23]. На частоту поглощения также влияют пространственные эффекты в молекуле так, в циклогексанолах частота аксиальной гидроксильной группы на несколько единиц выше частоты экваториального гидроксила [23—251. При применении приборов высокой разрешающей силы полоса свободной гидроксильной группы у некоторых первичных и вторичных спиртов выступает как частично расщепленный дублет в результате присутствия двух неэквивалентных С — О-поворотных изомеров [26—301. [c.119]

    IV. Молекулы алканолов — группы СН2 и гидроксильную группу, имеющую энергетически неэквивалентные контактные участки Н и О, которые условно будем называть группами Н и О. [c.269]

    Изучение динамики протонов в широком интервале температур позволило выявить в кристаллах KLaedta SHjO наличие нескольких структурно неэквивалентных групп молекул воды [299], дополнив рентгеноструктурные данные Хорда [772], не анализировавшего внешнесферную воду в этом соединении [c.403]

    Молекулярная структура [Ре2(С5Н5)2(СО)4] в кристаллическом состоянии исследована теперь весьма подробно в работе Миллса [135]. Он нашел, что имеются две кетонные карбонильные мостиковые группы, определяющие вместе с двумя атомами железа плоскость. К каждому атому железа (над и под этой плоскостью) присоединены по две концевые карбонильные группы и л -циклопентадиенильная группа, а поэтому вся молекула в целом имеет центр симметрии. Тем самым выдвинут убедительный довод в пользу предположения, что кетонные мостиковые карбонильные группы должны поглощать в инфракрасной области с частотами гораздо более низкими, чем у концевых групп. Спектр кристаллического [Ге2(С5Н5) 2 ( 0)4] может быть объяснен вполне удовлетворительно, поскольку Миллс обнаружил наличие двух неэквивалентных положений молекул. Таким [c.323]

    Интересным примером системы, в которой быстрое вращение не устраняет неэквивалентности, являются метиленовые протоны в (СНзСН20)280. Два протона данной метиленовой группы стереохимически неэквивалентны, поскольку атом серы расположен несимметрично в отношении вращения вокруг связей 5—О—С. Один из возможных ротамеров изображен на рис. 8-33. Небольшая точка в центре соответствует атому серы, связанному линиями с кислородом, неподеленной парой и этоксильной группой. Большой круг отвечает метиленовому атому углерода, который связан с двумя водородами, кислородом и метильной группой. Молекула ориентирована так, что мы смотрим на нее вдоль линии, соединяющей серу с углеродом. На примере этого ротамера можно увидеть неэквивалентность двух метиленовых водородов данной группы —СНг—. Для полного рассмотрения проблемы нужно учитывать все ротамеры. Предполагается, что [c.313]


    Взаимные превращения неэквивалентных групп в молекуле могут иметь место, даже если в целом молекула не изменяется (вырожденные превращения). Например, при вырожденном превращении кресло — кресло в циклогексане (рис. 13, ХШа ХШб) окружение атома С1 остается тем же самым, и поэтому такое взаимное превращение групп является вырожденным, но И1 претерпевает обмен между стереохимически неэквивалентными окружениями (Н1 в ХШа и Н1 в ХШб диастереотопны при внешнем сравнении). Аналогично уже указывалось, что атомы водорода метильной группы изохронны, поскольку вращение вокруг простых связей происходит быстро по сравнению со временем ЯМР-измерений. [c.40]

    Повышение энергетического барьера внутреннего вращения в молекуле К,М-диметилформамида при комплексообразовании объясняется увеличением характера двоесвязности С—N-связи при координации через карбонильный кислород. В результате повышения барьеров внутреннего вращения СНз-групп удается обнаружить цис- и транс-изомеры N,N-димeтилфopмaмидa, связанного в комплекс. Образование ДА-связей за счет неподеленной пары электронов атома азота должно приводить к уменьшению электронной плотности на атоме азота и, следовательно, к снижению барьера вращения группы СНз относительно связи С—N [545]. Наличие в спектрах комплексов N.N-диметилформамида с различными галогенидами металлов двух раздельных сигналов от протонов неэквивалентных групп СНд (в цис- и транс-положении относительно С=0) широко используется как доказательство координации через карбонильный кислород [545, 551, 574, 601, 642, 691]. Связывание через азот должно приводить к слиянию пиков метильных групп, которые в результате комплексообразования и снижения барьеров вращения становятся практически эквивалентными. [c.150]

    Для линейных молекул или ионов АХа, молекул в виде плоских треугольников АХз, тетраэдров АХ , октаэдров АХв и квадратных антипризм АХд, в которых все связывающие пары соединяют идентичные атомы или группы, следует ожидать абсолютно правильного геометрического строения и одинаковых длин связей А—Х, что подтверждается экспериментально. В каждом из вышерассмотренных типов молекул связывающие пары занимают геометрически равноценные положения вокруг центрального атома. Однако это не так, если в валентном уровне — пять или семь электронных пар. Например, в тригонально-бипирамидальной конфигурации, принятой для пяти электронных пар, два полярных положения неэквивалентны трем экваториальным. Электронная пара в полярной позиции образует по отношению к ядру угол 90 с тремя экваториальными парами и угол 180° с другой полярной парой, тогда как экваториальная пара образует с другими парами два угла 90° и два угла 120°. Выше уже было показано, что силы Паули, которые заставляют электронные пары находиться в пространстве на максимальном расстоянии друг от друга, являются короткодействующими силами. Поэтому они сильно возрастают при значительном перекрывании орбиталей. Следовательно, отталкивание между ближайшими соседними парами будет более важным, чем между отдаленными парами. В соответствии с этим общее отталкивание, претерпеваемое аксиальной электронной парой, будет большим, чем экваториальной парой. Поэтому можно предсказать, что полярные электронные пары займут равновесные положения на большем расстоянии от ядра, нежели экваториальные пары, так как это уравняет отталкива1[не между любыми электронными па-рами > Эта модель получила экспериментальное подтвержде- [c.220]

    РР2 два атома фтора неэквивалентны, чего и не требует симметрия. Это проявляется в константе спин-спинового взаимодействия Урр. Вообще, в оптически активных молекулах неэквивалентность ядер X в пирамидальных группах —MXj (—РРг, —NHj) или тетраэдрических группах —МХгУ (например, —СНгК, SIH2R и др.) не зависит от высоты барьера внутреннего вращения этих групп, в то же время при внутреннем вращении плоских групп —МХз и тетраэдрических групп —МХз потенциальный барьер обычно настолько низок, что ядра X становятся эквивалентными. [c.36]

    Остановимся немного подробнее на реакциях 1,2-элиминироЕа-иия. Одна из уходящих групп в этих реакциях, как правило, водород. Рассмотрим отщепления, возможные в молекулах алкилгалогенида и спирта. Нас будет интересовать, в первую очередь, направление реакции, если возможно два варианта образования двойной связи. Иалример, в 2-бромбутане существуют два неэквивалентных атома водорода. Один при углероде С(1), а другой соединен с атомом С(3). Оба этих атома водорода могут отщепиться и при этом в одинаковых условиях образуются два различных алкена бутен-2 и бутен-1. [c.231]

    Поскольку соединение имеет формальную непредельность, равную 1, и в спектре нет сигналов в области 8с > 100 м. д., характерной для атомов углерода связей С=С и С=Ы, то делаем вывод о циклической структуре молекулы. Спектр содержит шесть сигналов, следовательно, все углеродные атомы в молекуле химически неэквивалентны. Из мyльтиплeтнotти сигналов заключаем, что соединение содержит одну метильную, одну метино-вую и четыре метиленовые группы. Учитывая брутто-формулу, приходим к выводу, что в молекуле присутствует также группировка NH (соединение является вторичным амином). Наличие одной метильной группы указы- [c.149]

    Диборан BaHg и этан jH имеют однотипный элементарный состав. Долгое время эта формальная аналогия переносилась и на геометрическое строение и только в 1941 г. была предложена правильная структура диборана (рис. 111.28). Атомы водорода в ней неэквивалентны четыре из них образуют концевые связи, а остальные два — мостико-вые, лежащие в перпендикулярной плоскости. Уже само наличие мостиковых атомов водорода указывает на необычность связей в этой молекуле, так как, согласно классическим представлениям, водород одновалентен. Позже было установлено, что мостики могут образовать также и другие формально одновалентные атомы и группы атомов. Например, диборановую структуру имеют молекулы Ala l,. и А1з(СНз) . [c.195]

    На примере молекулы Н—D мы рассмотрели спин-спиновое взаимодействие двух различных магнитных ядер через связующие электроны (гетероядернов спин-спиновое взаимодействие). Аналогичное взаимодействие может происходить и между ядрами одного и того же изотопа (например, между протонами, если они находятся в различном химическом окружении), т. е. взаимодействие между группами неэквивалентных протонов (гомоядерное спин-спиновое взаимодействие). [c.80]

    Систему двух более близких по химическим сдвигам протонов можно наблюдать в молекуле 2-диметиламино-5,5-диме-тил-1,3-диоксана (рис. 41). Это циклическое соединение уже при обычной температуре существует в виде заторможенной конформации, вследствие чего протоны метиленовых групп становятся несколько неэквивалентными. Разница химических сдвигов протонов метиленовых групп в этом соединении при 60 МГц составляет 12 Гц, а КССВ — 10,05 Гц. В результате спин-спинового взаимодействия метиленовые группы коль- [c.93]

    Заторможенная конформация наблюдается также для молекулы 1,3-дигидродибенз [с, е тиепина, в результате чего протоны метиленовых групп становятся неэквивалентными и вступают в спин-спиновое взаимодействие друг с другом. Константа этого взаимодействия равна 17,5 Гц. Однако вследствие небольшого различия химических сдвигов протонов Н и протонов И (0,11 м.д.) в спектре, снятом при 60 МГц, наблюдается лишь слабо расщепленный дублет (рис. 42), который представляет собой две средние компоненты квартета. Наружные компоненты этого квартета заметить не удается, поскольку они примерно в 30 раз слабее ее внутренних компонент и поэтому находятся на уровне шумов. Но если снимать спектр 1,3-дигидродибенз [с, е] тиепина при более высокой рабочей частоте спектрометра, то степень неэквивалентности протонов метиленовых групп возрастает. Так, если при 60 МГц отношение Av/У составляет 0,38, то при 100 МГц оно становится равным 0,63. Интенсивности наружных компонент возрастают примерно в 2,5 раза и при достаточно хорошем отношении сигнал/шум можно наблюдать весь квартет протонов метиленовых групп. [c.94]

    Метод упрощения спектров ЯМР с помощью двойного резонанса был предложен Ф. Блохом в 1954 году. В эксперименте с двойным резонансом исследуемый образец подвергается, кроме сильного постоянного поля действию двух радиочастотных полей Нг и Н2- Допустим, молекула исследуемого соединения содержит две группы неэквивалентных ядер А И X (например, метильная и метиленовая группы в нитроэтане или протоны метильной группы и ядро атома фтора в СНз—Р). Если в момент резонанса ядер группы А (совместное действие полей Но и Ну) воздействовать дополнительным радиочастотным полем Яа на ядра только группы X, то первые (группа А) также ощущают это воздействие, проявляющееся в спектре ЯМР в изменении вида сигнала ядер группы А по сравнению с сигналом этой группы прн отсутствии поля Яа-Обычно различают гегпероядерный (группы А и X содержат различные ядра, например молекула СНд—Р) и гомоядерный двойной резонанс (ядра групп Л и X одного изотопа, например протоны метильной и метиленовой групп СНз—СНа—МОа). [c.95]

    Можно предположить, что углы между связями р -угле-родного атома всегда должны быть углами правильного тетраэдра, т. е. равняться 109°28 однако это справедливо только в тех случаях, когда углерод связан с четырьмя одинаковыми группами, как в метане, неопентане или тетрахлориде углерода. В большинстве же случаев величина валентного угла несколько отличается от значения для правильного тетраэдра например, в 2-бромопропане угол С—С—Вг составляет 114,2° [63]. Точно так же у 5р - и кр-атомов углерода обычно наблюдается небольшое отклонение от идеальных величин валентных углов 120 и 180° соответственно. Такие отклонения объясняются некоторыми различиями в гибридизации у кр -углерода, связанного с четырьмя различными атомами, эти четыре гибридные орбитали, как правило, неэквивалентны, т. е. каждая из них не содержит в точности 25 %, 5- и 75% р-электронов. Поскольку в большинстве случаев четыре атома или группы имеют разную электроотрицательность, каждый из них предъявляет свои требования к электронам углерода [64]. Чем больше электроотрицательность заместителя, тем больший р-характер проявляет атом углерода например, в хлорометане связь С—С1 имеет р-характер более чем на 75 % и за счет этого р-характер остальных трех связей понижен, так как имеются всего три р-орбитали (и одна ), которые должны быть поделены между четырьмя гибридными орбиталями [65]. В напряженных молекулах валентные углы могут очень сильно отклоняться от идеальных значений (разд. 4.23). [c.37]

    Поскольку два соединения, получающиеся при замене Н на 2 (46 и 47), не идентичны, а энантиомерны, атомы водорода в исходной молекуле неэквивалентны. Такие атомы или группы, дающие при замещении третьей группой энантиомеры, называют энантиотопными. В симметричном окружении такие два атома водорода ведут себя как эквивалентные, но в несимметричном окружении они могут вести себя по-разному. Например, при взаимодействии с хиральным реагентом они могут подвергаться атаке с различной скоростью. Это имеет важнейшее значение в ферментативных реакциях [127], так как ферменты способны к гораздо большей степени дифференциации, чем обычные хиральные реагенты. Примером служит цикл Кребса в биологических объектах, где щавелевоуксусная кислота (48) превращается в а-оксоглутаровую кислоту (50) через последовательность превращений, включаюш,их промежуточное образование лимонной кислоты (49). При проведении процесса с ща- [c.172]

    МвзСООСМез. Молекула симметрична, поэтому оба атома кислорода эквивалентны, что упрощает описание. Вследствие сильного а (С—С )-взаимодействия (роль этих эффектов обсуждается ниже) орбитали НЭП представляют собой -пару орбиталей при любом значении ф. Неэквивалентность НЭП обусловлена соседством трет-бу-тильной группы. [c.122]

    Одним из классических примеров молекул с диастереотопными ядрами являются молекулы, в которых метиленовая группа находится рядом с хиральным центром, как, например, в 1-бром-1-хлор-1-фторпропане (см. формулы выше). Протоны такой метиленовой группы диастереотоины, и их химические сдвиги различны. Протоны, химические сдвиги которых различны, называются магнитно-неэквивалентными в смысле химического сдвига, или анизохронвыми . Метильные группы изопропильного остатка, соседнего с хиральным центром, также диастереотопны (и, следовательно, анизо- [c.550]

    Как показывает последний пример, обсуждаемое здесь явление не ограничивается молекулами с оптически активными атомами углерода. Так, в рассмотренном выше общем случае фрагмент (а) может быть заменен второй СНгК-группой, что приведет к прохиральной ситуации, как, например, в диэтила-цетале ацетальдегида, спектр которого приведен на рис. VI. 7. Итак, во всех случаях, когда заместитель с общей структурной формулой СХгК оказывается по соседству с группой, в которой отсутствует симметрия, окружение заместителей X становится неэквивалентным, или диастереотопным. Группы, окружения которых являются зеркальным изображением, обозначаются как знантиотопные. При этом угол X—С—X между энантиотопными группами X делится пополам плоскостью зеркальной симметрии о [c.219]

    Константы геминального взагшодействья J(H,H). Сначала отметим, что константы геминального взаимодействия J(H,H) не наблюдаются в симметричных СН2- и СНз-группах (правило 3 в вышеупомянутом разделе). Тем не менее, взаимодействия между протонами группы СН2 в действительности существуют и их можно увидеть, если протоны химически неэквивалентны. Они неэквивалентны, если, например, СНз-группа является частью жесткой молекулы, или, в более общем случае, когда оба протона диастереотопны. Типичные значения 7(Н,Н) для производных метана находятся в пределах от 10 до 13 Гц (для СН4 (—)12,4Гц). Константы геминального взаимодействия зависят от угла связи и наличия заместителей. [c.237]


Смотреть страницы где упоминается термин Неэквивалентность групп в молекулах: [c.28]    [c.73]    [c.16]    [c.73]    [c.19]    [c.186]    [c.217]    [c.101]    [c.81]    [c.83]    [c.94]    [c.143]    [c.23]    [c.481]    [c.13]    [c.79]    [c.103]    [c.423]   
Избранные проблемы стереохимии (1970) -- [ c.39 , c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Неэквивалентность



© 2025 chem21.info Реклама на сайте