Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возбуждение молекул растворенного

    Радиационное окисление [5.5, 5.20]. Метод основан на воздействии ионизирующего излучения (V и р-лучи, ускоренные электроны, ускоренные ионы, нейтроны и др.) на обезвреживаемое соединение с получением ионов и возбужденных молекул, которые затем участвуют в реакциях. При действии излучений высоких энергий на разбавленные водные растворы органических соединений возникает большое число окислительных частиц, обусловливающих радикальное окисление. Полнота разложения соединений зависит от вида соединения, его начальной концентрации, продолжительности облучения и температуры стоков. Так, при очистке сточных вод от фенола с начальной концентрацией 100,0 мг/л разложение на 100% происходит через 1,5 ч, а при концентрации 10 мг/л — за 0,33 ч. [c.497]


    Важными характеристиками фотохимической реакции являются квантовый выход первичной фотохимической реакции и полный квантовый выход фотохимического процесса. Квантовый выход первичной фотохимической реакции у1 есть отношение числа прореагировавших возбужденных молекул в первичной фотохимической реакции к числу поглощенных квантов. Видимо, у, не может быть больше единицы. Полный квантовый выход фотохимического процесса у есть отношение числа образовавшихся в результате процесса молекул к числу поглощенных квантов. Полный квантовый выход фотохимического процесса может быть меньше и много больше единицы. Так, в результате взаимодействия На с СЬ полный квантовый выход достигает 10 молекул НС1 на один поглощенный квант (А. =400 нм). Полный квантовый выход в реакциях, протекающих в растворах, обычно меньше единицы. Так, полный квантовый выход фотохимической реакции разложения щавелевой кислоты в водном растворе равен [c.612]

    Низкие значения квантовых выходов реакций в растворах обусловливаются высокими скоростями дезактивации возбужденных молекул и рекомбинацией радикальных частиц, образовавшихся в результате распада молекул. [c.612]

    Спектр излучения растворов остается постоянным при возбуждении любыми монохроматическими длинами воли (спектральной линией), лежащими в области поглощения. Эта независимость спектра флуоресценции раствора от длины возбуждающего света является следствием влияния растворителя на возбужденные молекулы. [c.483]

    Предположим, что жидкий раствор облучается пучком света постоянной интенсивности. Если оптическая плотность достаточно мала, то скорость поглощения света /д будет постоянной по всему объему. За время, достаточно долгое по сравнению с временем жизни флуоресценции, устанавливается стационарное состояние, в котором скорость образования синглетных возбужденных молекул уравновешивается скоростью их исчезновения. Если в верхних [c.58]

    Перенос энергии, происходящий между молекулами на расстоянии, значительно превышающем их диаметры столкновения. Скорость переноса по этому механизму не должна лимитироваться диффузией и поэтому не должна зависеть от вязкости даже при переходе от жидких растворов к твердым. Для этого механизма тушение возбужденной молекулы D молекулой А не связано с диффузией или непосредственной встречей молекул за время жизни возбужденного состояния.. Электронные системы молекул D и А можно рассматривать как механические осцилляторы, которые способны колебаться с общей частотой v. Колеблющиеся электрические заряды молекул D и А будут взаимодействовать друг с другом как два диполя. Когда молекула А оказывается вблизи молекулы D, имеется определенная вероятность того, что прежде чем испустить фотон, молекула D передаст свою энергию возбуждения акцептору А. Константа скорости переноса энергии описывается уравнением [c.86]


    Кинетика флуоресценции в системах с обратимыми реакциями в жидких растворах. Иногда молекулы в возбужденном состоянии могут участвовать в обратимых процессах, приводящих в образо-вапию новых возбужденных молекул  [c.91]

    Наличие слабых взаимодействий между молекулами жидкости определяет откло нение их свойств от идеальных, особенно в растворах. При достаточно высоких температурах возрастает кинетическая энергия движения молекул в жидкости, возрастает число возбужденных молекул, связанное с переходом электронов на разрыхляющие [c.97]

    Так, В растворах иода в различных растворителях может осуществляться в различной степени взаимодействие неполярного молекулярного вещества с растворителем. Взаимодействие может протекать с образованием комплексов с переносом заряда и даже приводить к гетеролитическому расщеплению молекулы иода. Например, комплекс иода с бензолом относится к комплексам с переносом заряда, в которых при возбуждении происходит переход электронов с занятой орбитали одного атома на свободную орбиталь другого атома. Возбуждение молекулы приводит, таким образом, к переносу заряда от одного атома к другому. [c.496]

    К группе фотохимических реакций, имеющих квантовый выход меньше единицы, относятся реакции в газах, находящихся под малым давлением. При этом происходит уменьшение числа получающихся в первичных процессах возбужденных молекул за счет перехода энергии в теплоту или их дезактивации путем испускания света. При более высоких давлениях такая дезактивация происходит значительно реже, так как тогда молекулы чаще сталкиваются друг с другом и промежутка времени между двумя отдельными соударениями может оказаться недостаточно для испускания света возбужденными молекулами. К этой же группе относятся многие реакции в растворах. Одной из причин понижения квантового выхода до значений, меньших единицы, здесь является рекомбинация возникших при фотодиссоциации активных частиц. При этом молекулы растворителя облегчают процесс дезактивации, играя роль третьих частиц, уносящих избыточную энергию. [c.313]

    Следует отметить, что при соединении двух свободных атомов или свободных радикалов в первый момент образовавшаяся молекула находится в возбужденном состоянии — ее полная энергия, равная сумме полных энергий исходных частиц, достаточна для того, чтобы образовавшаяся химическая связь сразу же разорвалась. Для завершения реакции образования молекулы нужно, чтобы за время жизни возбужденной молекулы она встретила бы еще одну частицу и отдала бы ей часть своей энергии. Это условие выполняется в растворах и газах при достаточно высоких давлениях. При низких давлениях в газе два свободных атома или свободных радикала образуют устойчивый продукт лишь в присутствии третьей частицы в момент соударения. [c.281]

    Реакции с квантовым выходом у<1. Обычно у С. 1 для реакций в газах, находящихся под малым давлением. Низкие давления благоприятны для дезактивации части возбужденных молекул путем испускания света, поэтому квантовый выход понижается. К этой же группе относятся многие реакции в растворах. Здесь одной из причин понижения квантового выхода является рекомбинация воз- [c.257]

    При возбуждении молекулы переходят с самого низкого колебательного уровня 5о на различные колебательные подуровни 51 (рис. 7.5). Единственным общим пиком является пик, соответствующий переходам между самыми низкими колебательными уровнями двух состояний, т. е. между уровнем Уо одного состояния и уровнем Уо другого состояния этот общий пик обозначают обычно О—0. В растворах даже пики О—О могут не совпадать, так как два состояния сольватируются по-разному. Флуоресценция почти всегда бывает вызвана переходом 51->5о исключение составляют азулен и его простые производные (разд. 2.10) [19], флуоресцентное излучение в которых связано с переходами 52->5о. [c.314]

    Среднее время жизни т возбужденной молекулы играет существенную роль при рассмотрении механизмов реакций возбужденных молекул. Импульсный метод определения т состоит в следующем. Раствор флуоресцирующего вещества облучают коротким импульсом света ( 2—4 нсек) и интенсивность флуоресценции измеряют как функцию времени. Интенсивность флуоресценции (/f)i в момент I после начала измерений связана с интенсивностью флуоресценции в начальный момент (//)о соотношением [c.62]

    Предположим, что жидкий раствор облучается пучком света постоянной интенсивности. Если оптическая плотность достаточно мала, скорость поглощения света 1а будет постоянной по всему объему. За время, существенно большее времени жизни флуоресценции, устанавливается стационарное состояние, в котором скорость образования синглетных возбужденных молекул уравновешивается скоростью их исчезновения. Если в высших синглетных возбужденных состояниях не происходит ни фотохимических реакций, ни интеркомбинационной конверсии, скорость образования А равна скорости поглощения света и можно записать  [c.142]


    Влияние скорости потока на сдвиг потенциала (эффект магнитной обработки) имеет экстремальный характер (рис. 46), что совпадает с результатами исследований других авторов. Максимальный эффект магнитной обработки был отмечен при скорости потока, равной 2,5 м/с, и, циркулируя с этой скоростью, он за 30 мин пересекал магнитное поле 12 раз. Эффект магнитной обработки наблюдался только в циркулирующем потоке, в неподвижном растворе магнитное воздействие не изменяло его наводороживающей способности. Это связано с тем, что движение раствора при магнитной обработке приводит к нарушению водородных связей, увеличению молекулярных диполей и диэлектрической проницаемости раствора. Возбужденные молекулы воды связывают ионы водорода, что уменьшает адсорбционную активность сероводорода. [c.191]

    Электролиз расплавленных сред отличается от электролиза водных растворов физико-химическими свойствами электролитов. Для протекания электролиза необходимо присутствие ионов в электролите. В водных электролитах ионизации способствуют молекулы растворителя. В расплавах ионы образуются в основном в результате возбуждения молекул при высокой температуре. Ионные расплавы обладают многими уникальными свойствами, на этом основано их широкое применение не только для получения легких металлов, но и в новых областях техники, в приборостроении и в практике научных исследований. [c.442]

    Эксимеры образуются в концентрированных полимерных растворах или в твердом состоянии. Для того чтобы возбужденная молекула образовала эксимер с другой молекулой, последняя во время возбуждения должна приблизиться к возбужденной молекуле на расстояние 3—4 А. Возможность образования эксимера зависит также от пространственного расположения пары, молекул и параллельности выстраивания жестких плоскостных ароматических колец в полимерах. [c.266]

    На идею парамагнетизма асфальтенов обратили внимание, стали использовать при исследованиях, хотя и не знали по началу каким образом исследовать это явление и как использовать эту информацию. Следует отметить, что парамагнетизму нефтей и нефтепродуктов было уделено повышенное внимание, потому как [97] одним из классов парамагнитных молекул являются свободные радикалы, которые в свою очередь [82] выполняют в нефтепродуктах ту же роль, что и ионы в водных растворах. Стабильные и нестабильные свободные радикалы являются органическими соединениями, входящими в состав нефти и нефтепродуктов, а также представляют из себя электрически нейтральные молекулы, обладающие неспаренным электроном в одной или нескольких молекулярных орбиталях (в том числе и триплетно-возбужденные молекулы - бирадикалы и, согласно [96] - синглетные бирадикалы). К свободным радикалам относятся также ион - радикалы, представляющие собой электрически заряженные молекулы с одним или несколькими электронами [97]. [c.73]

    Квантовый выход реакций, протекающих в растворах или в газах при очень малых давлениях, очень часто оказывается меньше единицы. При реакциях в растворах это происходит вследствие дезактивации возбужденных молекул, возникших в результате поглощения света молекулами растворителя или в результате рекомбинации возникших при фотодиссоциации атомов и молекул, причем рекомбинация облегчается молекулами растворителя, играющими роль третьих частиц. Такое уничтожение реакционноспособных частиц получило название эффекта ячейки (клетки) Франка — Рабиновича. [c.233]

    В люминесцентном анализе нефтей и нефтепродуктов приходится иметь дело главным образом с растворами в органических растворителях. Яркость люминесценции зависит от способности молекулы отдавать поглощенную энергию в виде световой энергии. Выход люминесценции в растворе, в свою очередь, зависит от концентрации люминесцирующего вещества в растворе. Однако при больших кон-ценхрацпях яркость свечения растворов возрастает медленнее, чем их концентрации, а ири дальнейшем увеличении концентрации яркость свечения даже начинает снижаться. Это явление, получившее название концентрационного тушения люминесценции, следует обязательно учитывать даже при проведении ориентировочного количественного анализа. Чтобы молекула оказалась способной флуоресцировать, необходимо чтобы электронная оболочка возбужденной молекулы была защищена своей структурой от внешних влияний и при соударениях с другими молекулами не растрачивала электронной энергии молекул. [c.483]

    Возбужденная молекула 2-нафтола является более сильной кислотой, чем невозбужденная, потому диссоциация возбужденной молекулы успещно конкурирует с флуоресценцией и безызлучательными процессами деградации энергии электронного возбуж-деиия. Это приводит к тому, что в спектре флуоресценции 2- аф-тола даже в кислых растворах отчетливо видны две полосы. Более коротковолновая полоса соответствует флуоресценции недиосо-циированного 2-нафтола, более длинноволновая — флуоресценции 2-нафтолят-аниона, образовавшегося при диссоциации возбужден-иой молекулы 2-нафтола. Увеличение концентрации ионов водорода в растворе подавляет диссоциацию возбужденного 2-нафтола. В спектрах флуоресценции это проявляется как увеличение интенсивности флуоресценции недиссоциированного 2-иафтола и уменьшении интенсивности флуоресценции 2-нафтолят-аниона. Количественная обработка таких спектров при различных концентрациях иона водорода в растворе позволяет вычислить константу равновесия протолитической диссоциации возбужденного [c.77]

    Влияние иа кинетику флуоресценции диффузионных градиентов и релаксации растворителя. Даже в отсутствие каких-либо обратимых реакций возбужденных молекул может наблюдаться ие--экспопеициальность затухания флуоресценции в присутствии ту-Ш Ителя, вызываемая неустановивш-им ися диффузионными градиентами. Обычно кинетические уравнения основаны на предположении о стационарности диффузии в жидкой среде. При поглощении света возбужденные молекулы возникают в растворе в условиях статического распределения молекул тушителя. Учет неустаиовившей-ся диффузии дает выражение для закона затухания флуоресценции [c.97]

    Соединения, содержащие тяжелые атомы, тушат триплетные состояния, но с существенно меньшей эффективностью, чем синглетные. Различают два эффекта тяжелых атомов внутренний эффект тяжелого атома (тяжелый атом, например атом галогена, находится в возбужденной молекуле) и внешний эффект тяжелого атома (тяжелый атом находится в соединении, добавленном в растворитель). Внутренний эффект тяжелого атома проявляется, например, в дезактивации триплетных молекул антрацена и его дихлор- и дибромпроизводных. При переходе от антрацена к 9,10-ди-хлорантрацену и 9,10-дибромантрацену увеличивается константа скорости дезактивации триплетных состояний от 1,1-10 до 2,3-с-. Внешний эффект тушения триплетных состояний существенно проявляется только при больших концентрациях тушителей и сильно зависит от донорно-акцепторных свойств триплетной молекулы и тушителя. Тушение тяжелыми атомами резко возрастает при образовании комплексов донорно-акцепторного типа между триплетной молекулой и молекулой, содержащей тяжелый атом. Возбужденные донорно-акцепторные комплексы могут распадаться па ион-радикалы в полярных средах. Так, при импульсном фотолизе водного раствора сульфоантрахиионов в присутствии KI наблюдается образование антрасемихинона с максимумом поглощения 520 нм, образующегося в результате реакции переноса электрона  [c.167]

    Ридиациониая очистка сточных вод от органических загрязнений. Радиолизом водных растворов называют преобразование растворенных веществ вследствие поглощения энергии иониз.ирующего и лучення. Химические изменения в системах происходят за счет пш лощения энергии. Результатом этого процесса являются ионизация и возбуждение молекул воды, приводящие впоследствии к образованию химически активных частиц — радикалов. В разбавленных растворах, в которых ионизирующее излучение полностью поглощается водой, такими частицами могут быть атомы водоро- [c.235]

    Квантовая теория показывает, что у окрашенных тел и растворов энергия возбуждения молекул должна находиться в пределах от 35 до 70 ккал1моль, если больше 70 ккал1моль — поглощение происходит в ультрафиолетовой области спектра меньше 35 ктл моль — в инфракрасной области. Окраска берлинской лазури связана с осцилляцией электрона между атомами Fe (II) и Fe (III). Поглощение электромагнитных колебаний света веществами разного состава неодинаково. [c.32]

    Это понятно, ибо включение 5р -атома углерода в напряженный цикл 1,2-диоксетана должно увеличивать экзотермичность разрыва цикла. При распаде а-пероксилактонов образуются электронно-возбужденные молекулы СО2, возбужденные триплетное и синглетное состояния которого по энергии расположены очень высоко. В табл. 5.10 приведены кинетические характеристики термолиза в растворе некоторых из ранее изученных диоксетанов по [79—82]. [c.250]

    Наблюдаемый эффект можно объяснить тем, что структура воды не может не сказаться на вероятностях излучательных и безызлучательных переходов красителей в водных растворах. В том случае, когда структура воды под воздействием ионов разупорядочивается и, следовательно, создаются условия для более сильного взаимодействия между возбужденной молекулой и средой вследствие ослабления жесткости ее окружения (возможно, с увеличением гидратации молекулы), увеличивается вероятность отвода энергии от возбужденной молекулы (с синглетно-возбужденного и триплетного уровней). Это приводит к тушению флуоресценции как при комнатной, так и при низких температурах. [c.107]


Смотреть страницы где упоминается термин Возбуждение молекул растворенного: [c.32]    [c.337]    [c.50]    [c.97]    [c.70]    [c.112]    [c.187]    [c.194]    [c.235]    [c.356]   
Флеш-фотолиз и импульсный радиолиз Применение в биохимии и медицинской химии (1987) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте