Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гистосовместимости генов

    Отторжение трансплантата в наибольшей мере определяется главным комплексом гистосовместимости. Гены ГКГ отличаются необычайно высоким полиморфизмом. В геноме индивида содержится лишь несколько разных генов, кодирующих белки ГКГ Но в популяциях человека известно огромное количество аллельных вариантов этих генов и, соответственно, белков — варианты белков класса I и варианты белков класса II отдельные индивиды могуг наследовать лишь один (гомозиготы) или два (гетерозиготы) из этих вариантов. Таким образом, между людьми существуют индивидуальные различия по белкам ГКГ. Число комбинаций разных аллелей по генам этой системы достигает нескольких миллионов. Это самая полиморфная система человека из всех известных в настоящее время. Высокая степень полиморфизма генов обеспечивает столь же высокую степень индивидуальности по белкам, которые кодируются этими генами. [c.485]


    Для выведения линий животных, устойчивых к возбудителям инфекций, можно использовать другой подход, заключающийся в создании путем трансгеноза наследуемых иммунологических механизмов. С этой точки зрения рассматривают самые разные гены, ответственные за работу иммунной системы гены основного комплекса гистосовместимости, Т-клеточных рецепторов, лимфокинов. Наиболее обнадеживающими на настоящее время являются предварительные результаты, полученные при введении мышам, кроликам и свиньям генов, кодирующих Н- и L-цепи какого-либо моноклонального антитела. Идея этого подхода заключается в том, чтобы снабдить трансгенное животное наследуемым механизмом защиты, позволяющим обойтись без иммунизации с помощью прививок. [c.434]

    Гуморальные и клеточные реакции, ответственные за отторжение тканей и органов при межвидовой их пересадке или же при пересадке пациенту, не состоящему в родстве с донором, направлены в основном против так называемых антигенов гистосовместимости, расположенных на поверхности клеток. Впервые эти белки были открыты при изучении антигенов лейкоцитов человека (НЬА). Кодирующие их гены расположены на 6-й хромосоме. Эти поверхностные маркеры играют ключевую роль в узнавании организмом своих и чужих клеток. Предварительный подбор НЬА-гаплотипов донора и реципиента существенно улучшил результаты операций по пересадке органов. Четыре из пяти главных локусов (А, В, С и Ог) комплекса генов НЬА (рис. 8.2) кодируют серологически определенные [c.331]

    Защитные механизмы от инфекционных заболеваний функционируют путем препятствия вторжению возбудителя, или путем изменения рецепторов. Вторжению или размножению возбудителей препятствуют, главным образом, иммунные механизмы и экспрессия генов главного комплекса гистосовместимости, а также иммунологические способности различных молекул, таких, как интерферон, нейропептиды, гормоны и интерлейкины. [c.234]

    Существуют исключения из описанной нами общей картины. Некоторые гены могут экспрессироваться даже в сильно метилированном состоянии. Ярким исключением является локус гистосовместимости Н2 в линии ранних эмбриональных клеток, который, по-видимому. [c.387]

    Кластеры У-генов, кодирующих иммуноглобулины,-не единственные примеры громадных (с молекулярной точки зрения) генных областей, предназначенных для синтеза однотипных белков. Главный комплекс гистосовместимости также связан с образованием белков, участвующих в иммунном ответе. Он охватывает очень протяженную область ДНК, в пределах которой расположено много генов, имеющих родственную структуру и функции. (Однако для экспрессии этих генов не требуется перестройка последовательностей ДНК.) [c.503]


    О важности иммунного ответа у млекопитающих свидетельствует огромное число генов, кодирующих иммуноглобулины и относящихся к локусу гистосовместимости, что заставляет нас более подробно остановиться па характеристике этих обширных генных кластеров. [c.503]

Рис. 39.15. Локус гистосовместимости содержит ряд генетических участков гены класса I организованы в огромные кла- Рис. 39.15. <a href="/info/1324276">Локус гистосовместимости</a> содержит ряд генетических участков <a href="/info/1407492">гены класса</a> I организованы в огромные кла-
    Структурная организация локусов иммуноглобулинов и гистосовместимости является яркой демонстрацией того, какое огромное расстояние пройдено от первоначальной концепции гена как обособленного неизменного участка ДНК, кодирующего один-единственный белок. Теперь нам известно, что гены могут образовывать огромные кластеры, состоящие из многих родственных последовательностей. Гены могут экспрессироваться, образуя альтернативные формы белка, и, наконец, они могут формироваться путем физических перестроек последовательностей ДНК в процессе развития соматических клеток. Таким образом, в течение последнего десятилетия представления об основном предмете генетики претерпели существенные изменения. [c.518]

    ГЛАВНЫЙ ЛОКУС ГИСТОСОВМЕСТИМОСТИ. Протяженная область хромосомы, содержащая большой кластер генов, кодирующих трансплантационные антигены и другие белки, обнаруживаемые на поверхности лимфоцитов. [c.521]

    У человека в Y-хромосоме содержатся по крайней мере три гена, один из которых необходим для дифференциации семенников, второй требуется для проявления антигена гистосовместимости, а третий оказывает влияние на размер зубов. [c.80]

    Картирование десятков тысяч генов представляет собой чрезвычайно трудную задачу, хотя ее и облегчает то, что некоторые гены собраны в группы, так называемые кластеры. Кластеризованное расположение имеют гены глобинов, белков главного комплекса гистосовместимости, иммуноглобулинов. Трудности изучения генетики человека обусловлены тем, что анализируемое потомство малочисленно, поколения сменяются медленно, а подбор пар, естественно, не поддается планированию. Задача картирования человеческого генома оказалась сушественно облегченной благодаря освоению методов работы с соматическими клетками. [c.294]

    Ценность практических приложений для научных исследований. Потребности в медицинской диагностике и консультации послужили сильным побудительным стимулом для фундаментальных исследований. Многие явления, которым фундаментальная наука пытается найти объяснение, просто остались бы неизвестными, если бы они не обнаружились при изучении заболеваний. Мы бы не знали о роли половых хромосом в определении пола, не будь больных с аномалиями половых хромосом. Такое явление, как нестабильность хромосом при анемии Фанкони или синдроме Блума, с возникающими при этом соматическими мутациями и злокачественными новообразованиями (разд. 5.1.6), было обнаружено случайно при обследовании отдельных пациентов с целью постановки диагноза. Генетический анализ супергена главного комплекса гистосовместимости у человека внес большой вклад в наши представления о том, как организован генетический материал на уровне более высоком, чем генный локус, и за счет чего достигается высокое генетическое разнообразие в человеческой популяции (разд. 3.5.5). Исследования в этой области наверняка развивались бы значительно ме- [c.15]

    Именно так и развивалась генетика человека. В разд. 2.1 мы обрисуем структуру группы английских исследователей хромосом, работавших в конце 50-х гг., когда были обнаружены первые хромосомные аберрации у человека и положено начало клинической цитогенетике. Другие, современные примеры-группы, активно занимающиеся изучением главного комплекса гистосовместимости (разд. 3.5.5) и поисками соответствия между генными локусами и сегментами хромосом с помощью метода гибридизации клеток (разд. 3.4). [c.16]

Рис. 3.37. Родословная с кроссинговером между генами Н1А-А и НЬА-С главного комплекса гистосовместимости. Кроссинговер между А и С должен был произойти в гаметах отца и привести к гаплотипу 1, 2, 27 у пятого ребенка [193]. Рис. 3.37. Родословная с <a href="/info/1354924">кроссинговером между</a> генами Н1А-А и НЬА-С <a href="/info/1277963">главного комплекса гистосовместимости</a>. <a href="/info/1354924">Кроссинговер между</a> А и С должен был произойти в гаметах отца и привести к гаплотипу 1, 2, 27 у пятого ребенка [193].
    Другая возможная функция-это защита от вирусной или бактериальной инфекции. Антигенный материал человеческого происхождения может быть включен во внешнюю мембрану вируса, в результате чего этот вирус труднее распознается организмом другого человеческого индивида. Однако, если вирус содержит МНС-материал от генетического отличного индивида, он может быть намного легче инактивирован иммунной системой. Такой механизм объясняет, почему высокий полиморфизм МНС-системы имеет селективное преимущество. Другая возможная функция МНС-района-защита от заражения опухолевыми клетками других особей того же вида. С таким объяснением хорошо согласуются наши представления о важной роли МНС-сис-темы при трансплантации, а также высокая степень ее полиморфизма. Дальнейшее выяснение свойств и функций главного комплекса гистосовместимости поможет нам решить многие проблемы, например как организм управляет своим взаимодействием со средой и как недавние изменения в окружающей среде могут повлиять на генетическую конституцию в будущем. Полезно задать следующие вопросы существуют ли в природе другие примеры таких генных кластеров с родственными функциями Может ли их анализ изменить что-то в наших представлениях о кластере МНС На самом деле, один такой пример, уже очень тщательно проанализированный, существует-это мимикрия у бабочек. [c.222]


    Как уже говорилось (разд. 3.5.5), локусы главного комплекса гистосовместимости (МНС) расположены в хромосоме 6 человека и гомологичны генам комплекса Н2 мыши [113]. Иммунизация инбредных линий мышей разными, явно неродственными антигенами (синтетическими полипептидами, сывороточными белками, антигенами клеточных поверхностей) индуцирует высокие уровни антител в одних линиях и низкие уровни (или отсутствие ответа) в других. Количество индуцированных антител контролируется локусами иммунного ответа (1г), которые являются частью комплекса Н2. Заражение мышей вирусом лейкемии вызывает рак, более легкий в одних линиях, чем в других [766]. Эти различия контролируются генами, которые, подобно генам 1г, относятся к комплексу Н2 [741 740 765 783]. Позже было продемонстрировано сцепление комплекса Н2 с генетическими факторами предрасположения к аутоиммунному тиреоидиту мышей [859] и восприимчивости к лимфоцитарному вирусу хориоменингита. [c.267]

    В табл. 6.1 не вошли фенотипы по главному комплексу гистосовместимости (МНС) (разд. 3.5.5) и другие менее детально изученные полиморфные системы, а также многие системы ферментов, для которых выявлены только редкие варианты. Если включить в рассмотрение все эти системы, то можно показать, что любой человек на нашей планете, за исключением идентичных близнецов, генетически уникален. Физиологическая функция известна голько для некоторых из перечисленных в табл. 6.1 полиморфных систем. Возможное значение полиморфных генов для предсказания риска заболевания в изменяющихся условиях среды обсуждалось в разд. 4,5.2. [c.281]

    Вероятно, полиморфизм по МНС поддерживается естественным отбором, возникающим в результате инфекционных заболеваний. Логично предположить, что помимо групп крови системы АВО с инфекционными заболеваниями могут ассоциировать и другие полиморфные системы. Априорно наиболее подходящим представляется главный комплекс гистосовместимости (МНС), в особенности по генам HLA. [c.338]

    Другая важная задача — выведение трансгенных животных, устойчивых к заболеваниям. Потери в животноводстве, вызванные различными болезнями, достаточно велики, поэтому все более важное значение приобретает селекция животных по резистентности к болезням, вызываемых микроорганизмами, вирусами, паразитами и токсинами. Пока результаты селекщш на устойчивость животных к различным заболеваниям невелики, но обнаде-живающи. В частности, созданы популяции крупного рогатого скота с примесью крови зебу, устойчивые к некоторым кровепаразитарным заболеваниям. Установлено, что защитные механизмы от инфекционных заболеваний обусловлены либо препятствием вторжению возбудителя, либо изменением рецепторов. Вторжению возбудителей, равно как и их размножению, препятствуют в основном иммунная система организма и экспрессия генов главного комплекса гистосовместимости. Одним из примеров гена резистентности у мышей служит ген Мх. Этот ген, обнаруженный в модифицированной форме у всех видов млекопитающих, вырабатывает у Мх -мышей иммунитет к вирусу гриппа А. Ген Мх был вьщелен, клонирован и использован для получения трансгенных свиней, экспрессирующих ген Мх на уровне РНК. Однако данные о трансляции Мх-протеина, обусловливающего устойчивость трансгенных свиней к вирусу гриппа А, пока не получены. Ведутся исследования в целях получения трансгенных животных, резистентных к маститу за счет повышения содержания белка лакто-ферина в тканях молочной железы. На культуре клеток из почек трансгенных кроликов было показано, что клеточные линии, содержащие трансгенную антисмысловую РНК, имели резистентность против аденовируса Н5 (Ads) более высокую на 90 — 98% по сравнению с контрольными линиями клеток. Л. К. Эрнст продемонстрировал также устойчивость трансгенных животных с геном антисмысловой РНК к лейкозу крупного рогатого скота, к заражению вирусом лейкоза. [c.130]

    Между гомологичными генами одного мультигенного семейства (см. гл. ГХ) также возможны рекомбинационные обмены, например генная конверсия или неравный кроссинговер. Такие обмены могут иметь ряд любопытных следствий. Некоторые мультигенные семейства, например гистоновые гены, состоят из высокогомологичных генов. Реко.мбинационные обмены между ними должны способствовать унификации последовательности всех генов семейства, так что такие семейства должны эволюционировать как единое целое, без значительной дивергенции отдельных членов се.мейства. Напротив, у тех семейств, члены которых сильно дивергировали, рекомбинация может множить разнообразие существующих вариантов, поскольку при обмене между двумя генами может получиться третий, ранее не существовавший вариант. Такие события обнаружены не только в случае специализированных рекомбинационных систем, например в генах поверхностного гликопротеина трипаносом, но и в вариабе ть-ных мультигенных семействах млекопитающих, например среди У-генов и.м.муноглобулинов и среди генов главного комплекса гистосовместимости. [c.109]

    Т-лимфоциты защищают организм от клеточных инфекций, в частности от внутриклеточных паразитов (микробных клеток, живущих внутри кле-ток-хозяев). Т-лимфоциты могут узнавать инфицированную клетку, если соответствующий антиген расположен на ее поверхности. Контакт с антигеном является ключевым моментом активации Т-клеток и их клонального отбора. Взаимодействие с антигеном возможно только в комплексе с поверхностными маркерами, которыми являются группы белков гистосовместимости МНС (от англ. Major histo ompatibility omplex). Идентифицированы гены, кодирующие три класса белков МНС, при этом во взаимодействии с антигеном принимают участие белки только классов 1 и 2. [c.477]

    D1 Кортикальный маркер тимоцитов, исчезающий на последней стадии созревания Т-клетки. Его находят также на клетках Лангерганса . Молекула D 1 состоит из трех полипептидных цепей с ММ 49 кДа ( Dla), 45 кДа ( DIb) и 43 кДа (СД1с) и каждая из них закодирована соответствующим геном на первой хромосоме. Названные цепи ассоциированы с p-2-микроглобулином и, следовательно, антиген аналогичен классическим антигенам гистосовместимости, хотя и закодированным на другой хромосоме. [c.568]

    Большая часть Т-лимфоцитов узнает чужеродные антигены только в том случае, если эти антигены ассоциированы на клеточных поверхностях с меМг бранными гликопротеинами, которые кодируются генами главного комплект гистосовместимости (МНС). Существуют два основных класса гликопротеинов МНС 1) гликопротеины класса I, имеющиеся на поверхности почти всех соматических клеток с ядрами,-они представляют вирусные антигены цияю-токсическим Т-клеткам 2) гликопротеииы класса И, которые, будучи ассоциированы с чужеродными антигенами, узнаются Т-хелперами они имеются в поверхности большинства В-клеток, некоторых Т-клеток и макрофагов и а  [c.66]

    Простейшим примером аллотрансплантации служит переливание крови. На самом деле кровь представляет собой жидкую ткань, поэтому любое переливание крови можно рассматривать как аллотрансплантацию. Отторжение в данном случае выражается в агглютинации донорских эритроцитов. Однако найти подходящего донора для переливания крови довольно легко, потому что здесь важны всего два антигена (А и В). Проблема возникает в случае других тканей, клетки которых несут множество антигенов, кодируемых генами, составляющими так называемый главный комплекс гистосовместимости (МНС — от англ. major histo ompatibility omplex). Подробнее вопросы связанного с этим комплексом отторжения трансплантатов рассмотрены в разд. 25.7.13. [c.186]

    Некоторые псевдогены имеют в целом такую же структуру, как и функционально активные гены, с обычным расположением последовательностей, соответствующих экзонам и интронам. Они становятся неактивными в результате мутаций, нарушающих одну или все стадии экспрессии гена. Эти изменения могут проявляться в виде нарушения инициирования транскрипции, препятствовать осуществлению сплайсинга на границах экзон—интрон или приводить к преждевременному терминированию трансляции. Обычно псевдоген несет несколько вредных мутаций, вероятно, потому, что ген, однажды перестав быть активным, стал объектом для дальнейшего накопления мутаций. Такие псевдогены были обнаружены во многих системах генов, включая гены глобинов, иммуноглобулинов, антигенов гистосовместимости и т.д. [c.278]

    Главный локус гистосовместимости занимает небольшой участок на одной из.хромосом мыши (локус Н2) и человека (HLA). В пределах этого участка выявляется много генов, продукты которых выполняют функции, связанные с иммунным ответом. Для тех индивидуальных генных локусов, продукты которых идентифицированы, в популяции было обнаружено много аллелей. Локус считается высокополиморфным, и это означает, что индивидуальные геномы в популяции с большей вероятностью отличаются друг от друга по этому локусу. —- Нек оторые типы функций, картируемые в Н2 и прилежащем районе, суммированы на карте, представленной [c.516]

    Трансплантационные антигены представляют собой трансмембранные белки, состоящие из двух цепей. Одна из них представлена 32-микроглобулвном, белком с мол. массой 12000 (он кодируется единственным геном, расположенным на другой хромосоме). Этот компонент нужен для того, чтобы димерный белок расположился на клеточной поверхности. Трансмембранный компонент представлен полипептидной цепью в 45000 дальтон, кодируемой локусом гистосовместимости. У белка имеются три наружных домена (примерно по 90 аминокислот каждый один из этих доменов взаимодействует с 132-микроглобулином), трансмембранная область из 40 аминокислотных остатков и короткий цитоплазматический домен из 30 остатков, который располагается внутри клетки. [c.516]

    Методы картирования генов, обсуждавшиеся в предыдущих разделах, были основаны на экспрессии изучаемых генов в культурах клеток. Гены, кодирующие ферменты клеточного метаболизма, (табл. 18.2) и гены, кодирующие поверхностные антигены, такие, как белки главного комплекса гистосовместимости или антигены группы крови, удовлетворяют этому условию. Гены, не обладающие подобным фенотипическим проявлением, не могут быть картированы лищь с использованием описанных методов. Это ограничение удается преодолеть с помощью методов генной инженерии. При этом становится возможным картирование любых последовательностей ДНК, для которых можно получить соответствующий ДНК-зонд. Эти методы внесли поистине революционный переворот в генетический анализ гибридов соматических клеток. [c.308]

    Примерами супергенов у человека могут служить кластеры гемогло-биновых генов. а-Подобные гены, кодирующие один из двух типов по-липептидных цепей, составляющих каждую молекулу гемоглобина, тесно сцеплены в последовательности длиной 30 т. п. н., локализованной в хромосоме 16. Р-Подобные гены, кодирующие полипептиды второго типа, сгруппированы в последовательность длиной 60 т. п. н. в первой хромосоме (рис. 16.17). Гены иммуноглобулинов образуют кластеры, или супергены (см. гл. 16). Локализованный в хромосоме 6 суперген HLA включает 4 локуса, кодирующих антигены гистосовместимости, а также некоторые другие гены с близкими функциями, например кодирующие компоненты системы комплемента. [c.187]

    Существуют два основных класса молекул МНС-класс I и класс 11, каждый из которых представляет собой набор гликопротеипов клеточной поверхности, кодируемых двумя сцеплеииыми группами генов, вместе составляющих главный комплекс гистосовместимости (рис. 18-48). Г ликопротеипы обоих классов - гетеродимеры с гомологичной общей структурой. Их N-концевые домены предназначены, по-видимому, для связывания антигена и его представления Т-клеткам. [c.265]

    При пересадке кожи от одной особи к другой трансплантат приживается только при наличии у реципиента всех антигенов гистосовместимости, имеюш,ихся у донора. Наследование антигенов, как правило, независимо и взаимодействие между аллелями осуществляется по принципу кодоминирования. В опыте скрестили между собой представителей двух линий лабораторных мышей. Естественно, что у гибридов первого поколения приживались трансплантаты от обеих родительских линий, а на гибридах второго поколения трансплантат от одной из родительских линий приживался на 27 из каждых 64 особей. По скольким генам гистосовместимости различаются эти две линии лабораторных мышей  [c.52]

    Большая часть Т-лимфоцитов узнает чужеродные агенты, если они ассоциированы на клеточных поверхностях с мембранными гликопротеинами, которые кодируются генами главного комплекса гистосовместимости (major histo ompatibility omplex, МНС) [272]. Существуют два класса молекул МНС, I и II, каждый из которых представляет собой набор гликопротеинов клеточной поверхности. Цитотоксические Т-клетки в трансплантационных реакциях отвечают в основном на чужеродные гликопротеины класса I, а Т-хелперы - класса П [273-275]. Гликопротеины МНС класса I кодируются тремя отдельными генетическими локусами, каждый из которых ответственен за одну полипептидную цепь с молекулярной массой -45 кДа (345 аминокислотных остатков). Все три последовательности - трансмембранные белки, состоящие из короткого гидрофильного С-концевого фрагмента, расположенного внутри клетки, гидрофобного участка, пронизывающего липидный бислой плазматической мембраны, и длинной, составляющей [c.68]

    Однако это правило имеет исключения. Некоторые комбинации тесно сцепленных генов на самом деле встречаются чаще, чем ожидается при равномерном распределении. Такое неравновесие по сцеплению впервые было постулировано у человека для групп крови КЬ (разд. 3.5.4) и доказано для главного комплекса гистосовместимости (МНС), особенно для системы НЬА (разд. 3.5.5), а также для ДНК-полимор-физмов. Неравновесие по сцеплению имеет две причины. [c.192]

Рис. 3.36. Группа сцепления локусов главного комплекса гистосовместимости (МНС) на хромосоме 6. НЬА-комплекс расположен на расстоянии 15 сМ от гена РОМз и на расстоянии 10 сМ от локуса фермента глиоксалазы (ОЬО). Внутри Рис. 3.36. <a href="/info/629797">Группа сцепления</a> локусов <a href="/info/1277963">главного комплекса гистосовместимости</a> (МНС) на хромосоме 6. НЬА-<a href="/info/1410280">комплекс расположен</a> на расстоянии 15 сМ от гена РОМз и на расстоянии 10 сМ от локуса фермента глиоксалазы (ОЬО). Внутри
    Сходство с комплексом МНС. Имеются два сходных момента в анализе мимикрии у бабочек и в анализе главного комплекса гистосовместимости. Во-первых, существует кластер генов с родственными функциями. У бабочек эти гены детерминируют мимикрирующие узоры, у человека они влияют, вероятно, на возможности клетки манипулировать средовыми агентами. Во-вторых, обе системы характеризуются высоким полиморфизмом и существенным неравновесием по сцеплению. Как может изучение бабочек помочь в понимании эволюции генного кластера главного комплекса гистосовместимости  [c.225]

    Главный комплекс гистосовместимости был открыт в связи с разработкой вопросов внутривидовой пересадки тканей, отсюда и его название. Комплекс расположен у человека на 6-й, а у мышей — на 17-й хромосоме и занимает значительный участок ДНК, включающий до 4х 10 пар оснований, или около 50 генов. Основными особенностями комплекса являются его значительная поли-гшносгь — наличие нескольких неаллельных генов, белю)вые продукты которых сходны в структурном отношении и выполняют идентичные функции, а также ярковыраженный полиморфизм — [c.85]

    Первые опыты в этом направлении были проведены с ин-бредными морскими свинками линий 2 и 13, которые отличаются друг от друга только по генам, контролирующим антигены II класса МНС (рис. 7.4). Т-клетки морских свинок, предварительно сенсибилизированных одним из антигенов (овальбумином, туберкулином и др.), вносили в культуру макрофагов, которые презентиру-ют антиген, использованный для иммунизации. Во всех случаях, когда макрофаги и Т-клетки были генетически идентичными (снн-генными), регистрировался сильный пролиферативный ответ Т-клеток, распознавших антиген на поверхности сингенных макрофагов. В то же время Т-клетки, отличающиеся от макрофагов по антигенам II класса, не в состоянии развить пролиферативный ответ в несингенной системе клеточного взаимодействия. Эти первые опыты позволили предположить, что примированные Т-клетки распознают не только антиген, использованный для иммунизи-ции, но и собственные антигены гистосовместимости. Однако уз- [c.164]

    Презентируюшие антиген (АГ) макрофаги (МФ), относящиеся к определенному гаплотипу по генам II класса главного комплекса гистосовместимости (например, 1-А или I-A "), помещали в культуру in vitro вместе с Т-лимфоцитами. После определенного времени совместного культивирования Т-лимфоциты, прошедшие примирование в первичной культуре, переносили во вторичную культуру, куда добавляли интактные клетки селезенки и гомологичный антиген. В тех слу чаях, когда Т-лимфоциты получали от первичной культуры, в которой взаимодействующие клетки (макрофаги и Т-клетки) были идентичны по генам II класса, констатировали выраженное развитие антителопродукции во вторичной культуре. В то же время Т-лимфоциты от первичной культуры, содержавшей не идентичные по генам II класса клетки, оказывались неспособными обеспечить хелперный эффект во вторичной культуре. Иначе, созревание Т-хелперов из предшественников происходит то.тько в условиях идентичности по генам II класса между взаимодействующими клетками [c.168]


Смотреть страницы где упоминается термин Гистосовместимости генов: [c.216]    [c.218]    [c.57]    [c.269]    [c.518]    [c.317]    [c.261]    [c.32]    [c.138]    [c.208]   
Генетика человека Т.3 (1990) -- [ c.32 ]




ПОИСК







© 2024 chem21.info Реклама на сайте