Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродный процесс определение скорости

    Если бы не было осложняющих обстоятельств, то для осуществления электролиза водного раствора соляной кислоты к электродам нужно было бы приложить напряжение, лишь немного превышающее 1,358 В. Знак прилагаемого к электродам напряжения должен быть противоположен знаку э. д. с. образовавшегося гальванического элемента. Однако для осуществления данных электродных процессов необходимо, чтобы ионы подошли к электродам, адсорбировались на них, после разрядки объединились в молекулы и десорбировались. Эти процессы протекают с определенными скоростями и на их осуществление требуется затрата дополнительной энергии, т. е. необходимо повысить прилагаемое напряжение. Это дополнительное напряжение называют перенапряжением. Оно складывается из перенапряжения на катоде АЬ к и перенапряжения на аноде А а. Кроме того, дополнительное напряжение требуется для преодоления сопротивления раствора электролита (А1/),как и любого проводника тока. Таким образом, напряжение, при котором будет происходить электролиз (напряжение разложения), равно [c.241]


    Полярографическую волну, подчиняющуюся уравнению (5.15), называют обратимой она имеет характерную крутизну (скорость подъема). В полулогарифмических координатах наклон прямой Е — 1я[(г д. пр — /)//] равен ЯТ/пР, что позволяет определить число электронов, принимающих участие в реакции. Наличие обратимости электродного процесса, определяющее возможность получения обратимой полярографической волны, важное обстоятельство для аналитика, поскольку во многих случаях, особенно в различных модификациях полярографического метода, только для обратимого процесса можно получить сигнал тока, имеющий аналитическое значение. Таким образом, важной составляющей подготовки к проведению полярографического определения нового соединения, или известного вещества в новых условиях (другой растворитель, другой фоновый электролит, присутствие поверхностно-активных веществ), является установление наличия обратимости процесса. [c.276]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    Необходимым условием всякого электрохимического коррозионного процесса является неравенство Еа < Е%, т. е. различие потенциалов катодных и анодных процессов на поверхности металла. Основным условием возможности прохождения процесса коррозии металла с водородной деполяризацией с определенной скоростью является требование, чтобы электродный потенциал анода (металла) был более отрицателен, чем потенциал разряда водородных иоиов с этой скоростью при данных условиях. [c.42]


    В 1905 г. И. Тафель провел определение скорости электрохимической реакции ввделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов водорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, а некоторой химической стадией, которая входит как звено в суммарный процесс. В качестве такой стадии И. Тафель рассматривал рекомбинацию атомов водорода в молекулу водорода, а Н. И. Кобозев и Н. И. Некрасов — сочетание различных стадий удаления адсорбированных атомов водорода. [c.10]

    Необходимо, однако, отметить, что для некоторых электродов, например платинового, в щелочных растворах перенапряжение в зависимости от концентрации щелочи не подчиняется уравнению замедленного разряда. Поэтому возникла необходимость в экспериментальной проверке скорости процесса разряда, что и было осуществлено Б. В. Эршлером, П. И. Долиным и А. Н. Фрумкиным, которые показали, что в некоторых случаях удается подобрать такие условия, когда при измерении скорости суммарной электрохимической реакции можно непосредственно измерять скорость одного этапа реакции, например разряда иона с переходом его в адсорбированный атом. Для этого платиновый электрод в определенном интервале потенциалов покрывают адсорбированными атомами водорода количество этих атомов на единице поверхности платинового электрода зависит от потенциала электрода. По мере увеличения анодной поляризации количество их убывает. При потенциале на одну десятую вольта положительнее, чем потенциал обратимого водородного электрода, выделение молекулярного водорода практически прекращается таким образом, можно полагать, что по сравнению с другими процессами оно не играет существенной роли. Если теперь такому электроду сообщить через раствор некоторое количество электричества, то единственно возможной электродной реакцией становится реакция разряда ионов водорода с переходом их в адсорбированные атомы. Дальнейшие стадии — образование молекул водорода — здесь не могут протекать. Для определения скорости процесса разряда удобнее применять переменный ток различной частоты. В самом деле, если электрод включить в цепь переменного тока, то он будет вести себя подобно конденсатору, т. -в. электроду будет эквивалентна электрическая схема, в котором емкость с и омическое сопротивление R включены параллельно. [c.322]

    Процессы, протекающие с очень большими скоростями, можно изучать с помощью электронного ос)1илло-графа, в котором подвижная система — это поток электронов, не имеющий инерции. Принципиальная схема электронного осциллографа приведена на рис. 19. В стеклянной колбе, из которой удален воздух, помещают два электрода катод и анод. Под действием электрического тока поток электронов вырывается из нагретого катода и через отверстие в аноде попадает на экран, оставляя на нем светящийся след. На участке между катодом и анодом электроны проходят между двумя парами параллельных металлических пластин, расположенных взаимно перпендикулярно. На эти пары пластин можно накладывать напряжение и тем самым вызывать отклонение электронного луча в любую сторону. Если к одной паре отклоняющихся пластин приложить напряжение, изменяющееся во времени по определенному закону, то запись, получаемая на экране, позволит установить характер изменения во времени напряжения, приложенного к другой паре пластин. Блок-схема включения электронного осциллографа приведена на рис. 33. Исследуемое напряжение подается на зажимы входа в паре пластин 2. Через сопротивление <3 и ламповый усилитель 4 (с питанием /) оно попадает на вертикально отклоняющиеся пластины 2. Аналогично подается напряжение на отклоняющиеся горизонтально пластины 5. С помощью переключателя в пластины могут быть соединены с генератором развертки, позволяющим наблюдать на экране трубки кривые изменения напряжения. Генератор питается от внешнего напряжения через зажимы 8 и переключатель 9. Если на пластины не подавать напряжения, то электронный луч на экране будет перемещаться только по вертикальной прямой при достаточно быстрых скоростях исследуемого процесса на экране осциллографа можно наблюдать светящуюся черту, длина которой пропорциональна амплитуде изучаемых электрических колебаний. Такую схему включения применяют в случаях, когда осциллограф служит в качестве нуль-инструмента. Для изучения кинетики электродных процессов применяют генератор развертки. Напряжение, подаваемое на плас- [c.61]


    Одним из условий использования изотопных индикаторов для количественного определения скорости истинного электродного "процесса, например скорости ионизации металла, является равномерное распределение радиоактивных и нерадиоактивных частиц металла в обеих фазах. При соблюдении этого условия, которое легко осуществимо в случае системы, состоящей из амальгамы и раствора соли данного металла, скорость ионизации (Ме—>Ме"+-Ьпе) может быть найдена- следующим образом. [c.212]

    Было предложено много способов использования поляризационных кривых для определения скорости коррозии. Наиболее простой из них — метод экстраполяции поляризационной кривой до стационарного потенциала. Если скорость электродного процесса контролируется скоростью электрохимической реакции, например скоростью разряда ионов водорода или ионизации металла, то в полулогарифмических координатах зависимость потенциала от логарифма плотности тока выражается прямой линией. Экстраполируя эти прямые до значения стационарного потенциала, т. е. потенциала металла при отсутствии внешнего тока, получают значение тока коррозии. Так, например, получив поляризационные кривые для одного и того же металла в двух разных электролитах (/ и 2), можно с достаточным основанием утвер- [c.145]

    Поляризация электрода — необходимое условие протекания электродного процесса. Рассмотрим катодное восстановление ионов водорода. Если катод 1гз-готовлен из платины, то для выделения водорода с заданной скоростью необходима определенная величина катодной поляризации. При замене платинового [c.288]

    Чтобы определить лимитирующую стадию, сравнивают закономерности исследуемого электродного процесса с закономерностями, характерными для различных стадий. При этом для измерения поляризации используют трехэлектродную электрохимическую ячейку (см. рис. 49), позволяющую определить изменение отдельного гальвани-потенциала, а скорость электродного процесса измеряют при помощи приборов, фиксирующих электрический ток. После определения лимитирующей стадии, соответствующим образом изменяя условия электродного процесса, можно изменить его скорость в нужном направлении. Данная стадия оказывается лимитирующей лишь в определенных условиях, и изменение этих условий (например, изменение поляризации) может привести к смене лимитирующей стадии. После этого варьирование параметра, от которого сильно зависела скорость электродного процесса, может перестать оказывать на нее заметное влияние. [c.171]

    Полярографический метод широко используется, например, для определения незначительных примесей в металлах и горных породах, при анализе ряда органических веществ, а также для определения констант нестойкости комплексны. соединении, изучения скорости и механизма электродных процессов и др. [c.505]

    Если скорость электродного процесса ограничена скоростью реакции, которая включает переход частиц из формы, в которой они находятся на одной стороне двойного электрического слоя, в форму, которую они приобретают на другой стороне слоя, что требует определенной энергии активации, то говорят об активационном перенапряжении. Оно представляет собой сумму перенапряжения переноса заряда, реакционного перенапряжения и перенапряжения кристаллизации. Другими словами, это общее перенапряжение за вычетом диффузионного. Реакционное перенапряжение возникает на стадии химической реакции и не зависит от скорости переноса зарядов через границу раздела электрод/раствор. Такое перенапряжение, например, имеет место при протекании реакции РЬ(ОН)з" РЬ " + ЗОН", которая предшествует восстановлению иона РЬ ". Перенапряжение кристаллизации связано с медленным внедрением ионов в кристаллическую решетку или с медленным выходом из нее. Часто для обозначения активационного перенапряжения используют термин кинетическая поляризация (АЕкии). [c.135]

    Таким образом, из полярографических кривых можно определить коэффициенты диффузии разряжающихся частиц, число электронов, участвующих в единичном акте электродного процесса, а также коэффициенты переноса и константы скорости, если их значения меньше 2-10 см/с. Электрохимическим процессам, константы скорости которых больше 2-10 , отвечают обратимые волны. Следовательно, для таких реакций кинетические данные из полярографических волн получены быть не могут и для определения Ко и а прибегают к релаксационным методам. [c.304]

    Образование окисных или солевых слоев влияет не только на анодное растворение металлов, но приводит и к ингибированию многих других электродных процессов. Так, при адсорбции кислорода на платине замедляется скорость ионизации молекулярного водорода в сернокислых растворах. Такое же влияние оказывает адсорбированный кислород и на электроокисление различных органических веществ (метанола, этанола, этилена и др.). На рис. 198 представлены тафелевские зависимости для анодного выделения кислорода на платиновом электроде из растворов хлорной кислоты. При достижении определенной плотности тока происходит резкий рост перенапряжения и выход о Т Г [c.373]

    Книга представляет собой краткое изложение теоретических основ и практического использования одного из современных высокоинформативных электрохимических методов — вольтамперометрии с линейной и треугольной разверткой потенциала. Рассматривается теория электродных процессов, контролируемых скоростями диффузии, переноса заряда, кинетикой предшествующих, последующих, каталитических химических реакций и последовательных электрохимических стадий. Детально разбираются критерии определения лимитирующей стадии электродного процесса. Подробно излагаются вопросы влияния адсорбции электроактивных веществ на форму и параметры вольтамперных кривых. Даны примеры исследования электродных процессов. Глава УП раздела первого издания Осциллографические полярографы написана канд. техн. наук Р. Ф. Салихджановой. В этой главе рассматриваются блок-схемы и принципы действия отдельных узлов и блоков осциллополярографов, а также дается описание серийных отечественных и зарубежных специализированных приборов, в которых одним из режимов работы является осциллографический. Таким прибором является, например, отечественный полярограф ППТ-1. [c.3]

    Для качественного рассмотрения особенностей электродных процессов удобно воспользоваться следующей гидродинамической моделью. Предположим, что два сосуда, заполненных жидкостью, сообщаются между собой через систему последовательно соединенных трубок разного диаметра. Условием равновесия такой системы служит равенство уровней жидкости в обоих сосудах. Если поднять уровень жидкости в одном из них так, что возникнет перепад давления Ар, то начнется перетекание жидкости из одного сосуда в другой. Величина перепада давления Ар аналогична поляризации электрода в электрохимических процессах, скорость перетекания жидкости — скорости электродной реакции I, а каждая из соединительных трубок моделирует определенную стадию электрохимического процесса. Общий перепад давления Др складывается из перепадов на каждой из трубок Ару Ap=2Ap Аналогично этому в электрохимической системе общая поляризация А определяется совокупностью поляризаций АЕ , соответствующих отдельным стадиям. Однако аналогичное соотношение [c.146]

    Так возникло представление об элементарном акте электродного процесса. Непосредственное определение скорости реакции разряда ионов гидроксония с образованием адсорбированного атома водорода было проведено переменноточным методом в 1940 г. П. И. Долиным, Б. В, Эршлером и А. Н. Фрумкиным. Эта работа, а также работа В. А. Ройтера, В. А. Юзы и Е. С. Полуяна (1939 г.), в которой были определены скорости анодного растворения и катодного осаждения ряда металлов при помощи гальваностатических импульсов, представляют интерес как примеры первых количественных исследований кинетики электродных процессов нестационарными методами. В настоящее время нестационарные методы исследования получили чрезвычайно широкое развитие в электрохимической кинетике. Большое значение для электрохимической кинетики имело открытие и разработка Я. Гейровским (1922—1925 гг.) полярографического метода, при помощи которого были изучены многие электродные процессы. [c.12]

    Как и для обычных химических процессов, скорость электродных реакций зависит от температуры, и эта зависимость может быть использована для определения энергии активации. Чтобы найти энергию (точнее теплоту) активации W, аналогичную энергии активации обычных химических реакций, в случае электродного процесса необходимо было бы поддерживать постоянными не только обычные независимые переменные — давление, концентрацию реагирующего вещества, но и величину отдельного [c.225]

    Динамический характер электродного равновесия подтверждается опытами с использованием радиоактивных индикаторов. Так, если в металлический цинк (электрод 1-го рода, металлический цинк в растворе соли цинка) введена радиоактивная метка 2п, то через некоторое время эту метку можно обнаружить в растворе, хотя растворения цинка за этот промежуток времени установить не удается. Данные по накоплению в растворе можно использовать для определения скорости электродной реакции Zn " + 2е 2п. Точно также, если в системе водородного электрода в раствор введено некоторое количество ОгО, то в газовой фазе обнаруживаются молекулы Ог наряду с На. Но чаще всего сведения о механизме и кинетике электродных процессов получают в электрохимических опытах, связанных с нарушением равновесного состояния на границе электрод-раствор за счет использования внешнего источника напряжения. [c.541]

    Было установлено, что ПАВ влияют на скорость электродного процесса в определенном интервале потенциалов, в котором они могут адсорбироваться на электроде. Этот вывод был подтвержден экспериментально в работах Т. А. Крюковой, Н. В. Николаевой-Федорович, А. И. Левина и др. В этих работах было, в частности, обнаружено замедление катодного процесса при переходе заряда поверхности от положительных его значений к отрицательным и объяснены спады тока, происходящие при переходе через потенциал нулевого заряда. [c.10]

    В 1905 г. Ю. Тафель провел определение скорости электрохимической реакции выделения водорода на различных металлах и установил линейное соотношение между потенциалом электрода и логарифмом скорости процесса. Формула Тафеля явилась первым законом электрохимической кинетики. Н. И. Кобозев и Н. И. Некрасов (1930 г.) указали на роль энергии адсорбции атома водорода в кинетике разряда ионов вбдорода на электродах. Эти работы, однако, не привели к выделению электрохимической кинетики в самостоятельный раздел науки, так как в кинетике электродных реакций авторы не увидели ничего специфически электрохимического. Предполагалось, что скорость выделения водорода определяется не электрохимической стадией перехода электрона от металла к иону гидроксония, [c.11]

    Кроме того, учитывая медленность наступления равновесия во многих процессах, при разработке методик анализа следует отдавать предпочтение более быстрым реакциям и процессам и создавать условия для достаточно полного приближения их к состоянию равновесия или стационарному состоянию. Так, в операциях осаждения следует стремиться к получению крупнокристаллических осадков, а при полярографических определениях соблюдать такой режим, чтобы сила тока определялась именно скоростью диффузии ионов, которая пропорциональна их концентрации, а не скоростью самого электродного процесса окисления или восстановления. В больщинстве методов эмиссионного спектрального анализа режим электродного разряда должен обеспечивать полное испарение всех компонентов пробы, а в ряде случаев должна быть обеспечена равномерность подачи пробы в разряд во времени. [c.47]

    Скорость процесса, состоящего из ряда последовательных стадий, определяется скоростью самой медлен- уд Гидродинамическая мо-ной стадии. Это нетрудно понять, дель многсктадийной электрохими-если воспользоваться следующей ческой реакции гидродинамической моделью. Предположим, что два сосуда, заполненных водой, сообщаются между собой через систему последовательно соединенных трубок разного диаметра (рис. 70). Условием равновесия такой системы является равенство уровней воды в сосудах А я Б. Если поднять уровень в сосуде А, то возникает перепад давления Лр и вода из сосуда А начинает перетекать в сосуд Б. Величина перепада давления Ар аналогична поляризации электрода АЕ в электрохимической системе, а скорость перетекания воды — скорости электродной реакции . Каждая из соединительных трубок при этом моделирует определенную стадию электрохимического процесса. Скорость перетекания воды из сосуда А в сосуд Б определяется пропускной способностью самой узкой трубки, а перепад давления Др, который складывается из перепадов на каждой из трубок, в основном сосредотачивается также на этой лимитирующей трубке Ар Дрл . Аналогичным образом общая скорость электродного процесса определяется скоростью лимитирующей стадии, а общая поляризация АЕтнАЕ . [c.171]

    Измерения температуры проводят обычными средствами. Температурные коэффициенты высот пиков в ВПТ составляют для диффузионного контроля тока 1—2 %/К, кинетических процессов — 2,5—3 7о/К, каталитических процессов — 3 %/К и адсорбционных — минус 1 %/К. Термостатирование используют при анализе методом ВПТ только при специальных прецизионных измерениях и при регистрации вольтамперограмм растворов с высокой температурой. Такую регистрацию иногда проводи при определении ЭАВ, характеризующихся ква-зиобратимыми электрохимическими реакциями или электродными процессами, лимитируемыми скоростью сопутствующих химических реакций. В обычных условиях лаборатории колебания температуры не препятст вуют анализу методами ВПТ без термостатирования растворов, особенно при градуировке добавками или при достаточно частом контроле градуировочного графика. [c.124]

    Скорость электродного процесса определяется скоростью наиболее медленной стадии. Наибольшее торможение в стадиях а и б приводит к изменению концентрации реагирующих веществ около электрода и изменению его потенциала. В этом общем случае поляризацию можно назвать концентрационной. Если лимитирующей является только стадия транспортировки, то возникающую в этом случае поляризацию называют диффузионнгам перенапряжением. Еслп наиболее медленно протекает стадия химического превращения, то электродная реакция сопровождается реакционным перенапряжением. Поляризацию, имеющую место в том случае, когда электродный процесс лимитируется скоростью электрохимической реакции (стадия в ), чаще всего называют электрохимическим перенапряжением. Наибольшее торможение в стадии г вызывает фазовое перенапряжение. Поскольку стадии а и в свойственны всем электрохимическим процессам, а б и г — лишь их определенным группам, большее внимание в дальнейшем будет уделено диффузионному и электрохимическому перенапряжению. [c.332]

    Кроме величины поляризации на скорость электродных процесс сов влияют некоторые другие факторы. Рассмотрим катодное восстановление ионов водорода. Если катод изготовлен нз платины, то для выделения водорода с заданной скоростью необходима определенная величииа катодной поляризации. Прп замене платинового электрода на серебряный (при неизменных прочих условиях) для получения водорода с прежней скоростью понадобится большая поляризация. При замене катода на свинцовый поляризация потребуется еще большая. Следовательно, различ)1ые металлы обладают различной каталитической активностью по отношению к процессу восстановления ионов водорода. Величина нс-ляризацни, необходимая для протекания данного электродного процесса с определенной скоростью, называется перенапря жением данного электродного процесса. Таким образом, нерс напряжение выделения водорода на различных металлах различно, [c.303]

    Из уравнений (36.6) и (36.7) видно, что нестационарный ток к бесконечно большому плоскому электроду падает во времени и стремится к нулю при оо. Другой вывод, вытекающий из уравнений (36.6) и (36.7), состоит в том, что при О ток стремится к бесконечно большому значению. Это значит, что скорость подвода вещества при малых очень велика, поскольку мала эффективная толщина диффузионного слоя. В таких условиях может проявиться замедленность недиффузионных стадий электродного процесса, которые представляют наибольший интерес для электрохимической кинетики. Наличие этих стадий приводит к тому, что концентрация реагирующего вещества при наложении на электрод заданного значения потенциала падает до нуля не мгновенно [см. условие (I)], а спустя некоторый, хотя и небольшой, промежуток времени. Поэтому ток в момент включения потенциала оказывается не бесконечно большим, а приобретает вполне определенное конечное значение. [c.177]

    Накопленные к настоящему времени в литературе по этим вопросам данные связаны в основном со следующими четырьмя проблемами 1) влияние адсорбции ПАОВ в условиях нестационарной диффузии на протекающие с его участием электрохимические процессы (адсорбционные предшествующие и последующие волны) 2) влияние адсорбции электрохимически инактивного ПАОВ на диффузионные процессы у твердого электрода в стационарных условиях 3) влияние адсорбции не участвующих в электродном процессе ПАОВ на скорость конвективных потоков у поверхности жидкого электрода в условиях, когда причина возникновения конвекции не связана с адсорбцией ПАОВ (полярографические максимумы первого и второго рода) 4) возникновение в определенных условиях при адсорбции ПАОВ спонтанных тангенциальных движений поверхности жидкого электрода (полярографические максимумы третьего рода). [c.124]

    Электродная поляризация Аф это часть напряжения U, которое мы теряем б-езв-озвратно в связи с необратимостью процесса, протекак>щего при впол не определенной скорости электродных актов Аф, очевидно, пропорционально заданной -плотности тока. [c.133]

    Исследование пассивности проводят путем снятия потенциоста-тических поляризационных кривых. С помощью потенциостата на изучаемый образец металла подают строго определенный электродный потенциал и регулируют скорости анодного процесса (анодную скорость тока). Эту операцию повторяют неоднократно в необходимом диапазоне потенциалов, в результате чего получают анодную поляризационную кривую металла. [c.90]


Смотреть страницы где упоминается термин Электродный процесс определение скорости: [c.288]    [c.4]    [c.266]    [c.276]    [c.40]    [c.16]    [c.291]    [c.37]    [c.48]   
Радиохимия (1972) -- [ c.570 , c.571 ]




ПОИСК





Смотрите так же термины и статьи:

Процесс скорость

Процесс электродные

Скорость электродного процесса

Электродный процесс Процесс электродный



© 2024 chem21.info Реклама на сайте