Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты эволюция последовательности

    Получается, следовательно, такая картина. Нуклеотидная цепь ускоряет синтез полипептидных цепей. Образуются полипептиды, в которых последовательность аминокислот соответствует последовательности нуклеотидов. Некоторые последовательности аминокислот в полипептидной цепи оказываются способными ускорять синтез мононуклеотидов или ускорять распад уже существующих полинуклеотидов, ускоряя тем самым эволюционный процесс. Острейший кризис начального этапа биологической эволюции преодолевается — возобновляется естественный отбор полинуклеотидных матриц, причем теперь уже по признаку их способности обеспечить синтез все более каталитически совершенных полипептидных цепей. [c.51]


    Чтобы ответить на этот вопрос, адепты биохимических теорий биогенеза обычно принимают за наиболее высокоорганизованные соединения те, которые входят а состав живых организмов сахара и другие углеводы, жиры, аминокислоты, пептиды, полинуклеотиды, ферменты и т. д. На основании выделения таких соединений в качестве высокоорганизованных они строят варианты химической эволюции , представляя ее как последовательность возможных реакций синтеза. Сахара образуются из простейших соединений  [c.188]

    Каким образом увеличивался размер генома клеток при эволюции организмов от низших форм к высшим Изменения формы и поведения организмов обусловлены мутациями, меняющими последовательность аминокислот в белках. Однако такие мутации не могли увеличить количества генетического материала в процессе эволюции. Вполне возможно, что в ряде случаев в клеточное ядро случайно включалась копия одного илн нескольких генов [32а]. Тогда при наличии дополнительной копии гена клетка могла выжить, даже если в результате мутации в одном из парных генов нарушались структура и функция кодируемого им белка если парный ген оставался неповрежденным, организм был способен расти и размножаться. Дополнительный, несущий мутацию ген мог оставаться в нефункционирующем состоянии много поколений. До тех пор, пока этот ген продуцировал безвредные, нефункционирующие белки, он не элиминировался под давлением естественного отбора и со временем мог опять мутировать. Вполне возможно, что в конце концов белок, кодируемый этим многократно мутировавшим геном, оказывался в каком-то отношении полезным для клетки. [c.38]

    В табл. 2-2 приведены структурные формулы боковых цепей аминокислот, обычно встречающихся в белках (формула пролина приведена полностью). Даны также сокращенные трехбуквенные обозначения аминокислот, используемые при выписывании аминокислотных последовательностей пептидов и белков, а также однобуквенные сокращения, принятые в работах по эволюции белков и при составлении программ для вычислительных машин. [c.83]

    Следовательно, наличие в белковой глобуле согласованности всех видов невалентных взаимодействий в условиях компактной, плотной упакованной структуры, т.е. при максимальной насыщенности стабилизирующих внутримолекулярных взаимодействий, является исключительным свойством белков как гетерогенных полимерных макромолекул обычно этим свойством наделены кристаллы только низкомолекулярных соединений. У белков оно было выработано в процессе эволюции путем вариации состава и порядка аминокислот. Дошедшие до нас последовательности белков свертываются в физиологических условиях таким образом, что в конечном счете все остатки приобретают те конформации из присущих им наборов низкоэнергетических форм, которые в глобуле оказываются наиболее комплементарными друг другу. Благодаря этому происходит резкая энергетическая дифференциация конформационных состояний, практически равноценных для свободных монопептидов, и выделение из огромного количества структурных вариантов уникальной нативной конформации белковой молекулы. [c.192]


    Почему число отобранных типов аминокислот равно именно 20 Этот вопрос также связан с механизмом трансляции. На рис. 1.5,аг в порядке дискуссии даны некоторые трансляционные схемы существующего генетического кода. При дублетном варианте (длина кодона равна двум нуклеотидам) с помощью четырех разных нуклеотидов можно закодировать 4 = 16 аминокислот. Однако для длины кодона природа выбрала не два, а три нуклеотида. Для пояснения этого факта напомним, что длина кодона связана с решающим шагом в трансляции — опознанием нуклеотидной последовательности информационной РНК путем спаривания оснований нуклеотида с небольшой доставляющей аминокислоты транспортной РНК. Можно предположить, что при дублетном коде не оказалось оснований с достаточно большими константами ассоциации, и поэтому кодон должен был увеличиться до триплета, чтобы обеспечить специфическое узнавание. С помощью четырех различных нуклеотидов триплетный код может распознавать 4 = 64 аминокислоты. Однако используются только 0 аминокислот. Для объяснения этого факта нужно предположить, что генетический код развивался и что его эволюция остановилась на полпути. [c.17]

    Сравнение существующих метаболических путей образования аминокислот с генетическим кодом показывает, что связанные метаболически между собой аминокислоты коррелируют также н в отношении их кодонов [10]. Это делает весьма привлекательной идею параллельной эволюции генетического кода и метаболизма а также указывает на наличие исторической иерархии аминокис лот. Более простые аминокислоты, как Gly, Ser, Ala, Asp и Glu считаются ранними в отличие от более сложных аминокислот, на пример Met, His и Asn. Однако последовательное появление амино кислот не отражено в существующих белковых структурах, по скольку аминокислотные остатки белков в известной мере заменяе мы поэтому корреляция с ранними периодами жизни в настоящее время вряд ли правомерна. [c.18]

    Возникновение генетического кода может определяться двумя механизмами. Во-первых, в согласии с теорией Эйгена, возможно-преимущественное выживание объектов с белковой оболочкой,, обеспечивающей наибольшую скорость репликации. В результате-такого отбора может возникнуть совокупность объектов с одинаковыми белковыми чехлами, но с различными последовательностями нуклеотидов. Одной последовательности аминокислот будет соответствовать несколько последовательностей нуклеотидов. Однако в этом случае эволюция может прекратиться в результа- [c.550]

    Таким образом, двадцать аминокислот могут дать достаточное число последовательностей, чтобы их хватило не только для тысяч белков, присутствующих у каждого из ньше существующих видов организмов, но и для белков всех тех видов, которые когда-либо существовали в прошлом и появятся в будущем. Живущие сейчас на Земле виды составляют, по имеющимся оценкам, примерно одну тысячную всех видов, существовавших ранее на нашей планете. Молекулярная логика аминокислот и белков в достаточной степени предусматривает возможность возникновения новых видов, обусловленную дивергентной природой биологической эволюции. [c.138]

    Гомологичные белки, вьщеленные из организмов различных видов, обнаруживают гомологию последовательностей это означает, что наиболее важные положения в полипептидных цепях гомологичных белков заняты одними и теми же аминокислотами независимо от вида организмов. В других положениях гомологичные белки могут содержать разные аминокислоты. Чем ближе в эволюционном отношении виды, тем более сходны аминокислотные последовательности их гомологичных белков. Таким образом, последовательности гомологичных белков указывают, что содержащие их организмы произошли от общего предка, но в ходе эволюции претерпели изменения и превратились в разные виды. Аналогичные выводы были сделаны исходя из результатов изучения специфичности антител по отношению к антигенам гомологичных видов. [c.160]

    Опубликованы данные исследований сравнения белковой последовательности для образцов цитохрома с, выделенных из различных объектов, и предложено изображение генеалогического дерева, отражающего процесс эволюции этого белка. Из этих данных следует, что если рассматривать только различия в последовательности аминокислот, то грибы различаются между собой больше, чем насекомые и позвоночные. Таким образом, оказывается неясным, что же считать вершиной антропоцентрической шкалы ценностей, если основывать эту шкалу на цитохроме с. Представляет ли человек венец творения  [c.265]

    Совершенно другая картина наблюдается в эволюции биосинтетических путей вторичных метаболитов, например фенольных соединений в растениях. Эти растения образовались в процессе эволюции, по-видимому, из организмов, которые в биохимическом смысле были очень эффективны, т. е. они могли синтезировать свои компоненты из простых материалов. Вторичные метаболиты образовались из первичных, а эволюция путей, по-видимому, происходила от углеводов до образования конечного продукта и тоже шла поэтапно благодаря мутациям, которые увеличивали способность к выживанию. Если эта точка зрения верна, то вторичные вещества образуются путем побочных реакций (возможно, нескольких последовательных реакций) или продолжением биосинтетических цепей, ведущих к образованию первичных метаболитов. Исследования, проведенные до настоящего времени, показали, что это действительно имеет место все фенольные соединения образуются не из углеводов, а из ароматических аминокислот, из промежуточных соединений при биосинтезе ароматических аминокислот или из промежуточных соединений биосинтеза жирных кислот. [c.279]


    В последнее время все чаще высказывается соображение, что ферменты усложнялись постепенно. Вначале появились очень простые формы, которые становились все более сложными под давлением отбора в отсутствие системы кодирования. Затем появилась элементарная форма кодирования с использованием полинуклеотидов с этого момента в ходе эволюции началось усложнение структуры белка и кодирующей системы. Можно себе представить следующую последовательность событий. Вначале в результате абиотических процессов образовалось множество органических соединений, в том числе и некоторые аминокислоты, важные в биохимическом отношении. В возникшем таким образом сложном водном растворе, возможно, при участии простых катализаторов, могло образоваться множество низкомолекулярных пептидов путем более или менее беспорядочного соединения аминокислот в это же время могли образоваться простые нуклеотиды. Вероятно, некоторые пептиды обладали какими-то каталитическими свойствами и являлись, таким образом, предшественниками известных нам [c.133]

    Можно проследить и более ранние этапы эволюции глобиновых генов, поскольку последовательность аминокислот единственной цепи миоглобина млекопитающих свидетельствует о том, что он отделился от пути эволюции глобинов примерно 800 млн. лет назад. Мы все еще не располагаем данными об этом гене. Ген леггемоглобина растений, имеющий сходство с глобиновым геном, отделился еще раньще (гл. 20). [c.275]

    Модели, обладающие триггерными свойствами, оказались применимыми для описания процессов эволюции. Один из них — процесс возникновения единого кода генетической информации, когда одной последовательности нуклеотидов соответствует одна последовательность аминокислот. В моделях, предложенных [c.40]

    Основы генетики заложены открытиями, которые были сделаны Грегором Менделем в 1866 году, однако оставались почти неизвестными до 1900 года. В первой половине XX века исследователи пришли к выводу, что гены играют основную роль в функционировании и эволюции высших организмов. Однако в полной мере важность этого открытия стала ясна лишь после того, как было установлено, что веществом, ответственным за наследственность у всех организмов, являются нуклеиновые кислоты. Открытие химической структуры ДНК позволило понять молекулярные основы наследственности и механизмы действия генов и их передачи-в форме молекул ДНК из поколения в поколение. Наследственная информация хранится в форме нуклеотидной последовательности ДНК реализация наследственной информации основана на том, что нуклеотидная последовательность ДНК определяет последовательность аминокислот в белках. Единство всего живого прекрасно демонстрируется тем фактом, что код, связывающий последовательность нуклеотидов в ядре с последовательностью аминокислот, одинаков для всех организмов, будь то бактерии, растения, животные или человек. [c.13]

    В этой работе использовались аминокислотные последовательности 7 белков 17 видов млекопитающих. Вначале аминокислотные последовательности всех белков были написаны подряд друг за другом так, как будто они представляют единую последовательность аминокислот. Затем было определено минимальное число нуклеотидных замен, необходимых для того, чтобы объяснить происхождение этих белков от общего предка. Соответствующие значения числа замен были определены для каждой ветви филогенетического древа. Далее использовались два приема. Прежде всего оценивалось общее число замен в единицу времени на разных этапах эволюции. При этом подвергалась проверке гипотеза, согласно которой общая скорость изменений постоянна на протяжении всего времени эволюции. Вероятность того, что наблюдавшаяся изменчивость обусловлена случайными причинами, очень мала 4-10 . Это с высокой достоверностью означает, что скорость эволюции белков не была постоянной, как этого можно бьшо бы ожидать, исходя из предположения о пуассоновском характере процесса. [c.236]

    Поскольку РПК является линейным полимером, состоящим из нуклеотидов четырех типов, то всего имеется 4 = 64 возможных триплета (напомним, что важное значение имеет последовательность нуклеотидов триплета). Учитывая, что в белках находят всего 20 различных аминокислот, можно сделать вывод, что большинство аминокислот должно кодироваться несколькими триплетами другими словами генетический код вырожден. Генетический код, представленный на рис. 3-15, оказался чрезвычайно консервативным в эволюции за небольшими исключениями он остается одинаковым у таких разных организмов, как бактерии, растения и человек. [c.132]

    У клетки есть генетические механизмы, обеспечивающие дупликацию, модификацию и рекомбинацию генов в процессе эволюции (см, разд. 10.5.1). Следовательно, если уже какой-нибудь белок с полезными свойствами поверхности раз возникнет, то его основная структура может затем войти в состав многих других белков. В современных организмах различные белки с родственными функциями часто имеют схожую последовательность аминокислот. Считается, что такие семейства белков возникли путем дупликации одного предкового гена и последующего накопления в эволюции мутаций, постепенно обусловивших появление родственных белков с новыми функциями [c.146]

    Если число различий в аминокислотном составе одного и того же белка у двух разных биологических видов представить как функцию времени, прошедшего с момента дивергенции этих видов, то мы получим прямую линию. Иными словами, чем длиннее период, прошедший с момента дивергенции, тем больше число таких различий. Для удобства наклон прямой может быть охарактеризован через единицу эволюционного времени для данного белка (среднее время, необходимое для того, чтобы в последовательности из 100 аминокислот появилась одна аминокислотная замена). Сделав это для разных белков, мы убедимся в том, что каждый из них характеризуется своей особой скоростью эволюции (рис. 5-30). Поскольку все пары оснований в ДПК подвержены случайным изменениям в равной мере, эти разные скорости отражают различия в вероятности для тех или иных организмов со случайной [c.278]

    II обезьяны различаются лищь одной аминокислотой б последовательности из 104 аминокислот (номер 58 Глу— у человека, Тре — у обезьяны). Таким образом, за время их раздельной эволюции в гене ДНК, ответственном за синтез цигохрома С, произошла лишь одна мутация (замена аденина на гуанин, см. табл. 40.3). В табл. 40.4 приведены количества мутацпй, которые должны быть постулированы для того, чтобы связать гены, ответственные за синтез цитохрома С в различных организмах, с этим геном у человека. Наблюдаемая тенденция очевидна при уменьшении степени биологической связи организмов увели- [c.403]

    Очевидно, что в любом случае при данных условиях будет возникать популяция сходных полимеров со специфической первичной структурой, а не набор всех возможных последовательностей. Впрочем, значение этих данных для выяспения явлений, протекавших в добиологический период эволюции, еще надлежит доказать. Тот факт, что при небиологическом пептидном синтезе образование связей происходит небеспорядочным образом, может быть всего лишь интересным наблюдением, не имеющим непосредственного отношения к появлению биодинамических систем. Для выяснения этого вопроса было проведено сравнение относительной частоты появления дипептидов в синтезах с участием дицианамида (табл. 27, столбец 1) с частотой этих дипептидов в современных белках с известной аминокислотной последовательностью (табл. 27, столбец 2) [781. (При этих расчетах [781 были сделаны некоторые допущения, которые здесь не рассматриваются.) Иначе говоря, для выяснения вопроса о том, могли ли образуемые в модельных экспериментах последовательности иметь биологическое значение, сравнивали частоту определенных пептидов в современных белках и наблюдаемую в эксперименте реакционную способность составляющих их элементов. Параллельное уменьшение величины соответствующего параметра в столбцах 1 и 2 по мере увеличения размеров боковых цепей аминокислот наводит на мысль, что наблюдаемая вероятность образования связей между свободными аминокислотами и в самом деле может отра- жать явления, способствовавшие добиологической эволюции последовательностей аминокислот в пептидах. При изучении протеиноидов, полученных термическим путем, такого хорошего соответствия не наблюдалось (табл. 26). [c.246]

    Однако еще до появления жизни на Земле должен был происходить процесс саморепликации. Каким образом Разумно предположить, что фундаментальное значение для репликации нуклеиновых кислот и эволюции генетического кода имели специфические иуклео-нуклеиновые и пуклео-белковые взаимодействия [48]. Подобные процессы узнавания зависят от последовательности оснований и аминокислот. Согласно Мак-Элрою [49], такие взаимодействия, вероятно, играли ключевую роль при образовании белково-нуклеиновых комплексов и имели фундаментальное значение на ранних стадиях эволюции макромолекул. [c.185]

    Анализ вопроса этот автор начинает с рассмотрения возможных путей образования высокомолекулярных последовательностей — носителей информации . Роль последовательностей могут выполнять, например, остатки аминокислот, соединенные в полипептидные цепи. И белки и нуклеиновые кислоты — носители кода самоорганизация и эволюция должна начаться на уровне са-мовоспроизводящегося кода. Обсуждая вопрос о процессах сборки и распада поли.меров, протекающих в ящике конечного объема, через стенки которого могут втекать и вытекать мономерные единицы (высоко- и низкоэнергетические), Эйген приходит к выводу, что при oт yт твии самоинструктирования ожидаемое значение числа цепей с любой данной последовательностью практически равно нулю. Необходимо придать динамические свойства носителям информации , а в теории отбора должен фигурировать параметр, выражающий селективное преимущество через молекулярные свойства. [c.383]

    Изучение последовательности аминокислот в гемоглобине используют для выяснения вопросов эволюции в новой области науки — химической палеогенетике. Например, р-цепь гемоглобина лошади отличается от соответствующего белка человека в 26 местах (от общего числа 146), свиньи — в 10 местах, а гориллы — всего лишь в одном месте. Подсчитано, что в среднем удачная замена аминокислоты может произойти примерно один раз за десять миллионов лет (удачной считается замена, увеличивающая шансы на выживание). (Подобная замена обеспечивается заменой в последовательности оснований в молекуле нуклеиновой кислоты, разд. 37.18). [c.1055]

    Эволюционный путь, начинающийся от случайного набора частот встречаемости аминокислот, приводит к установлению существующих частот встречаемости. Как показали Кинг и Джукс, данные которых иллюстрируются на рис. 9.1, а, существует строгая корреляция между наблюдаемыми частотами встречаемости аминокислот и теми, которые можно ожидать при применении существующего генетического кода (рис. 1.5, б) к случайным нуклеотидным последовательностям в ДНК [144[. Эта корреляция явно указывает на случайность замен аминокислот, что подтверждает гипотезу эволюции, выдвигаемую нейтралистами [496]. Можно ли согласовать эти данные с установленным фактом консервативности замен аминокислот, т. е. с тем, что эволюция белка в значительной степени определяется отбором По-видимому, можно. [c.204]

    Плацентарные млекопитающие претерпели более быструю эволюцию организмов по сравнению с низшими позвоночными, например с лягушкой. Однако белки млекопитающих специализировались, по-видимому, не быстрее, чем белки лягушки, и лягушки образуют более старшую группу (150 Ма ), чем плацентарные млекопитающие (75 Ма). Вследствие этого виды, настолько близкие по анатомии и способу существования, что их можно отнести к одному виду лягушки (например. Rana), могут отличаться последовательностью аминокислот данного белка так же сильно, как летучая мышь отличается от кита. [c.211]

Рис. 8-12. Эволюция миоглобина и гемоглобина, возникших из предкового кислород-связывающего гемопротеина. Во всех миоглобинах, а также в а- и р-цепях всех современных гемоглобинов (исследовано в общей сложности 145 последовательностей) имеются шесть инвариантных остатков и большое число близких по свойствам аминокислот, занимающих в этих белках одинаковые положения. Можно предположить, что ген, кодировавший предковый одноцепочечный гемопротеин, подвергся дупликации. Одна из образовавшихся копий дала начало миоглобиновому гену, а другая - первоначальному гемоглобиновому гену. Оба этих гена в дальнейшем подвергались независимым мутациям. Гемоглобиновый ген мог в какой-то момент еше раз подвергнуться дупликации, в результате чего образовались современные гены а- и р-цепей. Рис. 8-12. Эволюция миоглобина и гемоглобина, возникших из предкового кислород-связывающего гемопротеина. Во всех миоглобинах, а также в а- и р-цепях всех современных гемоглобинов (исследовано в общей сложности 145 последовательностей) имеются шесть инвариантных остатков и <a href="/info/831964">большое число</a> близких по <a href="/info/20637">свойствам аминокислот</a>, занимающих в этих белках одинаковые положения. Можно предположить, что ген, кодировавший предковый одноцепочечный гемопротеин, подвергся дупликации. Одна из образовавшихся копий дала начало миоглобиновому гену, а другая - первоначальному <a href="/info/1353930">гемоглобиновому гену</a>. Оба этих гена в дальнейшем подвергались независимым мутациям. Гемоглобиновый ген мог в какой-то момент еше раз подвергнуться дупликации, в результате чего образовались <a href="/info/1899361">современные гены</a> а- и р-цепей.
    Рентгеноструктурные исследования дали неожиданный выход в увлекатёльную область эволюции. Близость строения миоглобина и субъединиц гемоглобина не случайна. Установление пространственных структур некоторых белков, имеющих различное происхождение, а также установление последовательности расположения аминокислот в них явилось мощным средством, позволяющим заглянуть внутрь процесса эволюции. Во всех ферментах, структура которых установлена до настоящего времени, активные центры располагаются в углублениях или впадинах, формы которых весьма близки. Почему Как возникло такре глобулярное пространственное образование  [c.261]

    Марголиаш и его сотрудники провели сравнение аминокислотных последовательностей цитохрома с, выделенного из 35 различных организмов. Небольшие отличия в последовательностях аминокислот наблюдаются на поверхностных участках белка. Некоторые же последовательности аминокислот характерны для всех образцов цитохрома с. Это показывает, что мутации, затрагивающие эти участки, всегда легальны. Цитохром с, выделенный ,из одного источника, после очистки можно применять для проведения экспериментов т с цитохромными ферментами, цолученнэши из совершенно другого, источника (например, один из-Дрож кей, другой от лошади). Это показывает, что в основном функция цй-тохрома с осталась практически неизменной в процессе эволюции, продолжавшейся миллиарды лет..  [c.265]

    За последнее десятилетие генетика претерпела быструю эволюцию. Составной частью методов генетики микроорганизмов стали значительно усовершенствованные методы биохимии и биофизики. Генетические исследования физической природы генов были ускорены появлением работы Уотсона и Крика о репликации первичной генетической информации. В свете этих достижений термин ген в настоящее время редко используется без расшифровки. В микробиологической генетике ему, по сути дела, нет адекватного значения. Для обозначения соответствующего понятия у микроорганизмов появились новые термины с более точным значением, например рекон (Бензер [1]). Представление о половом размножении как единственном методе генетической рекомбинации претерпело изменение и включило альтернативные механизмы, например трансформацию, конъюгацию у бактерий, парасексуализм в грибах и др. (Понтекорво [2]). Разрабатываются методы изучения последовательности пар оснований в нуклеиновых кислотах и механизма кодирования, управляющего последовательностью аминокислот в белках приближается решение и многих других фундаментальных проблем генетики. [c.140]

    Совершенно по-иному должна была протекать эволюция биосинтетических путей, ведущих к возникновению вторичных метаболитов, таких, например, как фенольные соединепия растений. Эти системы развились в ходе эволюции значительно позднее — у организмов, которые были уже вполне развиты в биохимическом смысле, т. е. были способны синтезировать все необходимые им компоненты из простых соединений. Вторичные метаболиты образовались из первичных метаболитов, и эволюция путей их биосинтеза от ранних предшественников к конечному продукту протекала ступенчато, нутем мутаций, которые приводили к увеличению выживаемости. Если это представление правильно, то вторичные метаболиты возникают в ходе побочных реакций (возможно, нескольких последовательных реакций) или в результате продолжения биосинтетических ценей, ведущих к образованию первичных метаболитов. Приведенный выше обзор подтверждает эту точку зрения, так как из него следует, что все фенилпропаноидные соединения, по-видимому, образуются из ароматических аминокислот. [c.371]

    Несколько слов о сущности механизма помехоустойчивости генетического кода. Этот механизм, возникший в процессе эволюции, является защитным, предохраняющим генетический код от всякого рода флюктуаций внешней среды. Или, другими словами, механизм помехоустойчивости предотвращает превращение систематизированной структурной информации в бессистемную при воздействии на ДНК неизбежного фона помех. Суть этого защитного механизма определяется одним из свойств генетического кода, получившего название вырожденпости. Понятие вы-рождепности означает существование серии триплетов, или кодонов, имеющих разную последовательность или разный состав азотистых оснований, но обладающих одинаковыми информационными свойствами, т. е. явление вырожденпости означает, что несколько триплетов могут кодировать одну и ту же аминокислоту. [c.161]

    Таким образом, в результате эволюции возникает, например, р-цепь, аминокислотный состав и последовательность аминокислот которой значительно отличаются от а-цепи, но именно это обстоятельство делает 5-цепь комплементарной, т. е. дает возможность соединяться с а-цепью. Лолучающееся при этом соединение — НЬ А (ojP ) —значительно более эффективно переносит кислород, чем гемопротеид с одной полипептидной цепью, например миоглобин. у- и б-Цепи также комплементарны по отношению к а-цепи, а образуемые ими соединения НЬ F и НЬ Аг— более эффективные переносчики кислорода, чем НЬ А. [c.146]

Рис. 3-38. Пример широко распространенной в эволюции белков перетасовки блоков белковых последовательностей. Участки белка, обозначенные окрашенными геометрическими фигурами, являются эволюционно родственными, но не идентичными. А. Бактериальный САР-белок состоит из двух доменов один из них (закрашенный треугольник) связывается со специфической последовательностью ДНК, второй - связывает сАМР (см. рис. 3-33). ДНК-связываюший домен родствен ДНК-связываюшим доменам многих других белков регуляторных генов, включая белки 1ас-репрессор и его-репрессор. Кроме того, две копии сАРМ-связывающего домена обнаружены в эукариотических киназах, регулируемых связыванием циклических нуклеотидов. Б. Представлены два домена, состоящие примерно из 40 аминокислот, каждый из которых встречается в трех больших белках позвоночных. Например, рецептор липопротеина низкой плотности (ЛНП) - это трансмембранный белок из 839 аминокислотных остатков, ответственный за выведение холестерола из клеток. Он содержит много доменов, имеющихся и в других белках, в частности, семь копий цистеин - богатого домена (светлые кружки), участвующих в связывании ЛНП, и три копии такого же размера (окрашенные Рис. 3-38. Пример <a href="/info/1868816">широко распространенной</a> в <a href="/info/168735">эволюции белков</a> перетасовки блоков <a href="/info/1868699">белковых последовательностей</a>. Участки белка, обозначенные окрашенными <a href="/info/512624">геометрическими фигурами</a>, являются эволюционно родственными, но не идентичными. А. Бактериальный САР-белок состоит из <a href="/info/1696521">двух</a> доменов один из них (закрашенный треугольник) связывается со <a href="/info/33265">специфической последовательностью</a> ДНК, второй - связывает сАМР (см. рис. 3-33). ДНК-связываюший домен родствен ДНК-связываюшим доменам <a href="/info/1633379">многих других</a> <a href="/info/1413231">белков регуляторных генов</a>, включая белки 1ас-репрессор и его-репрессор. Кроме того, две копии <a href="/info/597395">сАРМ</a>-связывающего домена обнаружены в эукариотических киназах, регулируемых связыванием <a href="/info/105540">циклических нуклеотидов</a>. Б. Представлены два домена, состоящие примерно из 40 аминокислот, каждый из которых встречается в трех <a href="/info/1345698">больших белках</a> позвоночных. Например, <a href="/info/1392555">рецептор липопротеина низкой плотности</a> (ЛНП) - это <a href="/info/166983">трансмембранный белок</a> из 839 аминокислотных остатков, ответственный за <a href="/info/1351204">выведение холестерола</a> из клеток. Он содержит много доменов, имеющихся и в <a href="/info/915815">других белках</a>, в частности, семь копий цистеин - богатого домена (светлые кружки), участвующих в связывании ЛНП, и три копии такого же размера (окрашенные
    Частоту изменений в нуклеотидных последовательностях ДНК (частота возникновения мутаций или скорость мутирования) удается определять только косвенным путем. Один из способов состоит в сравнении аминокислотных последовательностей одного и того же белка у нескольких биологических видов. Долю аминокислот, которые окажутся при этом различными, сопоставляют затем с числом лет, прощедщих с того момента, как два данных вида дивергировали в процессе эволюции от общего предка (этот срок оценивают на основе данных палеонтологической летописи). Исходя из этого можно вычислить среднее число лет, необходимое для того, чтобы какое-либо стойкое изменение затронуло одну из аминокислот данного белка. Поскольку каждое такое изменение отражает, как правило, одиночное изменение в нуклеотидной последовательности гена, кодирующего этот белок, мы тем самым узнаем и среднее число лет, требующееся для возникновения в данном гене одной стабильной мутации. [c.277]


Смотреть страницы где упоминается термин Аминокислоты эволюция последовательности: [c.403]    [c.129]    [c.67]    [c.108]    [c.281]    [c.34]    [c.287]    [c.136]    [c.248]    [c.25]    [c.132]   
Генетические основы эволюции (1978) -- [ c.223 ]




ПОИСК







© 2025 chem21.info Реклама на сайте