Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы спин-спинового взаимодействи

    В зависимости от числа связей, разделяющих взаимодействующие ядра, обозначаемого левым верхним индексом, различают п р я м ы е к о н-с тан ты /дв (взаимодействия непосредственно связанных ядер), ге-м и н а л ь н ы е /дs (через две связи) и вицинальные ав (через три связи). При увеличении числа разделяющих связей константы спин-спинового взаимодействия уменьшаются и так называемые дальные константы, когда это число больше трех, относительно малы. [c.27]


    Анализ структуры спектров ЯМР, рассмотренный выше, касался в основном достаточно простых спектров первого порядка, но часто наблюдаются гораздо более сложные спектры не первого порядка, которые на первый взгляд кажутся непонятными. Это случается тогда, когда разность химических сдвигов двух типов ядер не отличается в несколько раз от значений константы спин-спинового взаимодействия, как бывает при наблюдении спектров первого порядка, для которых характерно неравенство [c.30]

    Протон На, связанный с центральным углеродным атомом, во всех случаях оказывается наименее экранированным. Его сигнал представляет собой сложный симметричный мультиплет, обусловленный расщеплением на двух парах концевых протонов. Два других сигнала принадлежат сим-протонам Нь и амги-протонам Не, каждый из них представляет собой дублет, вызванный расщеплением на центральном протоне. Различие в величинах констант спин-спинового взаимодействия /аЬ = 6—8 Гц и /ас = 10—15 Гц позволяет делать однозначное отнесение сигналов при интерпретации спектров ЯМР. си -Протоны Нь всегда менее экранированы, чем анти-протоны Не, и поэтому дают сигнал в более слабом поле. [c.108]

    Вицинальные константы и константы более далекого взаимодействия спинов зависят от пространственного строения фрагментов (молекул). Например, по константам V идентифицируются цис-, транс-, UH-, анти-, поворотные и конформационные изомеры (см. табл. 1.7 и рис. 1.10) при условии статической изомерии, т. е. когда потенциальные барьеры изомеризации достаточно велики. Имеется также возможность изучения методом спектроскопии ЯМР, в частности, по константам спин-спинового взаимодействия хиральности молекул. [c.36]

    Определение структуры вещества. Так как основными параметрами ЯМР-спектроскопии высокого разрешения являются химический сдвиг, константа спин-спинового взаимодействия и ин- [c.264]

    Константы спин-спинового взаимодействия протона с другими ядрами и тяжелых ядер между собой варьируются в очень широком диапазоне — от десятков до тысяч и более герц (в абсолютных величинах), что на некоторых примерах иллюстрирует табл. 1.8. [c.29]

    Влияние спинового состояния одного ядра на положение зеемановских уровней и резонанс другого несколько упрощенно можно описать следующим образом. Пусть в системе ядер АХ спин /х ориентирован против поля В, что соответствует состоянию Рх, тогда локальное магнитное поле на ядре А будет понижено по сравнению с тем, какое было бы в случае отсутствия ядра X. Это приведет к тому, что для достижения условия резонанса потребуется приложить поле более высокой напряженности, т. е. выше будет и резонансная частота [согласно 1.12], как это показано на схеме рис. 1.7. Если ядро X находится в состоянии ах, т. е. спин ориентирован по полю, то на ядре А локальное поле повысится, т. е. для резонанса потребуется наложение поля более низкой напряженности, чем в отсутствие ядра X. Таким образом, в спектре ЯМР будет наблюдаться дублетный сигнал ядра А. Расстояние между компонентами дублета (в Гц) и будет константой спин-спинового взаимодействия  [c.24]


    Константы спин-спинового взаимодействия ядер, включая тяжелые элементы, меняются по абсолютной величине от нуля до нескольких тысяч герц (нижний предел наблюдения определяется разрешением прибора). [c.27]

Таблица 16. Константы спин-спинового взаимодействия / Таблица 16. <a href="/info/131989">Константы спин-спинового</a> взаимодействия /
    Из существующей теории следует, что константы спин-спинового взаимодействия можно различать по знаку как положительные или отрицательные в зависимости от относительной энергетической выгодности той или иной взаимной ориентации ядерных спинов во внешнем магнитном поле. Экспериментально могут быть определены только относительные знаки констант спин-спинового взаимодействия, но принято, что прямая константа . С1н является положительной, исходя из чего указывают и знаки других констант. [c.27]

    В случае других ядер дело обстоит много сложнее. Как и для химических сдвигов, приближенные теоретические расчеты констант спин-спинового взаимодействия обычно не приводят к хорошим результатам. [c.29]

    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    Значения констант спин-спинового взаимодействия, как следует из сказанного (см. гл. I 2.3), также могут служить для целей идентификации и вместе с мультиплетностью и соотношением интенсивности компонент сигнала несут ценную структурную информацию. Прямые и геминальные константы ( / и V) характеристичны для типов связей атомов с магнитными ядрами, т. е. для валентных состояний атомов или гибридизации АО. Так, например, [c.35]

    Для неорганических соединений, когда константы спин-спинового взаимодействия очень велики (1000 Гц и более), проблема спиновой развязки встречает большие трудности. Требуемая мощность второго поля становится настолько велика, что может вызывать плавление или кипение образца. Перспективна здесь импульсная методика, которую полезно применять и по другим причинам. Она позволяет, например, раздельно получать эффекты изменения интенсивности и частоты или изменения интенсивности и спиновой развязки. [c.52]

    Как связаны обычные и приведенные константы спин-спинового взаимодействия В чем преимущества приведенных констант  [c.85]

    Спектры высокого разрешения подразделяют на два типа. К первому типу относят спектры, в которых разность в значениях химических сдвигов протонов, образующих спиновую систему, значительно (не менее чем в 6 раз) превышает значение константы спин-спинового взаимодействия. Таким спектрам соответствуют спиновые системы АтХ . Их называют спектрами первого порядка. Мульти- [c.290]

    Спектры ПМР записывает оператор. Студент готовит образец синтезированного им препарата, определяет химические сдвиги, рассчитывает константы спин-спинового взаимодействия и делает отнесение имеющихся в спектре сигналов к соответствующим фрагментам структуры синтезированного соединения. [c.292]

    Спектры ПМР характеризуются двумя параметрами — химическим сдвигом и константами спин-спинового взаимодействия, которые находятся в соответствии со структурой соединения и распределением электронной плотности в молекуле. [c.65]

    Знаки поляризации и мультиплетного эффекта зависят от структурных параметров (разность -факторов радикалов, знаки констант сверхтонкого взаимодействия в радикалах, знаки констант спин-спинового взаимодействия в молекуле), а также от спиновой мультиплетности пары. [c.297]

    Группы (Ш), находящимся в спин-спи-новом взаимодействии с протоном Н , а потому и дающим дублетный сигнал. Протон №, окруженный четырьмя вицинальными протонами, дает квинтет с центром 5,43 м. д. и константой J = = 6 Гц. Симметричность квинтета свидетельствует о равенстве всех констант спин-спинового взаимодействия протона № с соседями. Протоны ацетильной группы дают синглет интенсивностью в три протона при 1,98 м. д. Оставшиеся шесть линий в области 5,8—6,8 м. д. по суммарной интенсивности соответствуют двум протонам и образуют спектр типа АВ, в котором сигналы одного из протонов расщеплены в дублеты вследствие спин-спинового взаимодействия с третьим ядром. Это [c.4]


    Изучение С ЯМР спектров бис(л-кротилникельгалогенидов) показало, что электронная плотность неравномерно распределена между тремя атомами углерода л-аллильной группировки и умень-щается в ряду Сз > С1 > 2 [66]. Экранирование концевых атомов углерода, С) и Сз увеличивается в ряду транс-лигандов I < Вг < С С1, что хорошо коррелируется с большей лабильностью л-аллильного лиганда в иодсодержащем комплексе по сравнению с хлорсодержащим. Близкие значения констант спин-спинового взаимодействия Н- С атомов углерода Сь С2 и Сз в пределах 159— 165 Гц является прямым экспериментальным доказательством р -гибридизации аллильных атомов углерода. [c.109]

    Экспериментальные результаты, полученные при изучении этой реакции, являются прямым доказательством того, что растущая полимерная цепь образует с переходным металлом л-аллильный комплекс. Постоянство константы спин-спинового взаимодействия /а г = 13Гц свидетельствует о сохранении на протяжении всего процесса полимеризации сын-конфигурации концевого звена растущей полимерной цепи, что хорошо соответствует транс-1,4-структуре звеньев образующихся полибутадиенов. [c.117]

    Константа спин-спинового взаимодействия аь практически не отличима от нуля это говорит о р .р бридизации углеродных атомов в метиленовых группах, так что угол Н—С—Н составляет 125°. Величина ас>1ьс, что указывает на разное расстояние атомов На и Нь от атома металла (атомы На расположены ближе к Ме). Расстояния Са—Ср и Ср—С одинаковы и составляют [c.104]

    Из теории следует, что вицинальные константы спин-спинового взаимодействия протонов /нн, как правило, должны иметь положительный знак. Это наряду с положительным значением (см. выше) служит отправной точкой для определеяия знаков в других случаях. Константы Чцн меняются в более узких преде- [c.28]

Рис. 1.10. Зависимость вициналь-ной константы спин-спинового взаимодействия для фрагмента Н—С—С—Н от торсионного угла Рис. 1.10. Зависимость <a href="/info/294932">вициналь</a>-ной <a href="/info/131989">константы спин-спинового взаимодействия</a> для фрагмента Н—С—С—Н от торсионного угла
    Поскольку химический сдвиг б зависит от напряженности пиешнего магнитного поля, а константа спин-спинового взаимодействия — нет, то регистрация спектров ЯМР при более высокой напряженности поля позволяет увеличить отношение Аб /, т. е. приблизить картину спектра к первому порядку. [c.31]

    РР2 два атома фтора неэквивалентны, чего и не требует симметрия. Это проявляется в константе спин-спинового взаимодействия Урр. Вообще, в оптически активных молекулах неэквивалентность ядер X в пирамидальных группах —MXj (—РРг, —NHj) или тетраэдрических группах —МХгУ (например, —СНгК, SIH2R и др.) не зависит от высоты барьера внутреннего вращения этих групп, в то же время при внутреннем вращении плоских групп —МХз и тетраэдрических групп —МХз потенциальный барьер обычно настолько низок, что ядра X становятся эквивалентными. [c.36]

    Большую роль спектроскопия ЯМР сыграла в развитии теоретических концепций органической химии, касающихся, в частности, строения и стереохимии интермедиатов и механизмов химических реакций. Получены структурные данные о таких интермедиатах многих практически важных химических реакций, какими являются карбкатионы и карбанионы. Например, в случае изо-пропильного катиона значения химических сдвигов 8.ц и 8. ,с показывают значительное дезэкранирование магнитных ядер, особенно углерода, а значение константы спин-спинового взаимодействия /13С1Н свидетельствует о практически плоской структуре центральной части катиона (т. е., что гибридизация центрального атома углерода близка к зр ). Исследуют как классические кар-бониевые ионы, так и неклассические а-мостиковые карбкатионы, [c.38]

    При / = соп51 (б-сечение) получается набор синглетных сигналов групп неэквивалентных ядер, а при каждом б = сопз1 (/-сечение) получается информация о мультиплетности сигналов и константах спин-спинового взаимодействия. Метод позволяет избежать перекрывания мультиплетов и упростить расшифровку спектров. Большим преимуще- [c.48]

    Сопоставление с ИК спектрами показывает хорошую корреляцию частот некоторых валентных колебаний, например, г(51—Н) в соединениях типа RlR2HSi i или v( —С1) в алкилхлоридах R 1 с частотами ЯКР С1. Наблюдается линейная зависимость между числом несбалансированных р-электронов, которое определяется отношением в дОмод (е дОат), в галогензамещенных (С1, Вг, I) мета-нах и константами спин-спинового взаимодействия / Зс-н в молекулах этих соединений. [c.110]

    Константы спин-спинового взаимодействия не зависят от рабочей частоты прибора, но зависят от числа связей, через которые передается взаимодействие. Чем больше этих связей, тем, как правило, меньше константа. Константа спин-спинового взаимодействия зависит также от типа связей и геометрии молекул. Для каждого типа ядер и связей она величина постоянная и, как хи.мический сдвиг, является важнейшим параметром спектров ЯМР, несущим информацию о строении вещества. Значение константы зависит от природы резонирующих ядер, причем для ядер водорода она варьируется от О до 20 Гд в зявисимости от строения оргаичческого соединения (см, табл. 16). [c.289]

    На рис. 108 приведен спектр высокого разрешения протонон ароматического ядра динитрофенола, полученного нитрованием фенола. Определите строение этого вещества, если известно, что константы спин-спинового взаимодействия в спектре этого соединения равны 9,1 и 2,8 Гц. [c.295]

    При окислении ц//с-3-триметилсилил-2-пропенола диоксидом марганца образуется альдегид с г(ис-конфигурацией. На это указывает значение константы спин-спинового взаимодействия протонов СН =СН фрагмента (спиновая система АВ) 14 Гц при окислении хромовым ангидридом альдегид имеет транс-строение, -/дц 18 Гц. Слабопольные сигналы в спектрах этих альдегидов при 9,59 и 10,05 м. д. указывают на то, что исследуемые ве щества — альдегиды. Изменение конфигурации вещества при окислении в кислой среде обусловлено изомеризацией (( с-альдегида в транс- по схеме, [c.299]


Смотреть страницы где упоминается термин Константы спин-спинового взаимодействи: [c.109]    [c.114]    [c.115]    [c.115]    [c.13]    [c.24]    [c.31]    [c.40]    [c.48]    [c.276]    [c.289]    [c.291]    [c.292]    [c.292]    [c.299]    [c.2]    [c.6]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.235 ]

Химия гетероциклических соединений (2004) -- [ c.28 ]

Стереохимия углеводов (1975) -- [ c.177 , c.178 , c.179 , c.180 , c.181 , c.182 , c.183 , c.184 , c.185 , c.186 ]

Практикум по физической органической химии (1972) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие спин спин

Временные эффекты усреднение химических сдвигов и констант спин-спинового взаимодействия

Зависимость константы спин-спинового взаимодействия от геометрии и химической структуры

ИНТЕРПРЕТАЦИЯ ХИМИЧЕСКИХ СДВИГОВ И КОНСТАНТ СПИН-СПИНОВОГО ВЗАИМОДЕЙСТВИЯ

Измерение констант спин-спинового взаимодействия

Информация, получаемая из констант спин-спинового взаимодействия

Константы спин-спинового взаимодействия протонов

Константы спин-спинового взаимодействия протонов и геометрическая структура молекул

Константы спин-спинового взаимодействия с участием ядер Константы (13С—Н)

Общие сведения о константах спин-спинового взаимодействия

Связь химического сдвига и констант спин-спинового взаимодействия со строением молекул

Спин-спинового взаимодействия константа

Спин-спинового взаимодействия константа

Спин-спинового взаимодействия константа аллильная

Спин-спинового взаимодействия константа ароматическая

Спин-спинового взаимодействия константа в бензоле

Спин-спинового взаимодействия константа вицинальная

Спин-спинового взаимодействия константа геминальная

Спин-спинового взаимодействия константа гомоаллильная

Спин-спинового взаимодействия константа дальняя

Спин-спинового взаимодействия константа дипольная

Спин-спинового взаимодействия константа единица

Спин-спинового взаимодействия константа зависимость от растворителя

Спин-спинового взаимодействия константа комплексах олефинов

Спин-спинового взаимодействия константа модель

Спин-спинового взаимодействия константа олефинах

Спин-спинового взаимодействия константа относительные знаки

Спин-спинового взаимодействия константа приведенная

Спин-спинового взаимодействия константа структурная зависимост

Спин-спинового взаимодействия константа типичные значения

Спин-спинового взаимодействия константа транс

Спин-спинового взаимодействия константа циклопропане

Спин-спинового взаимодействия константа через пространство

Спин-спинового взаимодействия константа этанах

Спин-спинового взаимодействия константа этилене

Спин-спиновое взаимодействие константа расщепления

Спин-спиновое взаимодействие. Константа спин-спинового взаимодействия

Спин-эхо

Спины

Структурные зависимости констант спин-спинового взаимодействия

Таблица химических сдвигов протонов и констант спин-спинового взаимодействия

Фтор спектроскопия константы спин-спинового взаимодействия

Химические сдвиги и константы спин-спинового взаимодействия

ЯМР-спектроскопия константа спин-спинового взаимодействия



© 2025 chem21.info Реклама на сайте