Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Инструментальные методы анализа полярография

    ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА — количественные аналитические методы анализа, для которых требуется электрохимическая, оптическая, радиохимическая и другая аппаратура. К И. м. а. относят 1) электрохимические методы — потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на поглощении и излучении электромагнитных воли — эмис- [c.109]

    Одной из наиболее важных особенностей полярографии является возможность применения ее в качестве инструментального метода анализа. Эта особенность и обусловила широкое и быстрое развитие полярографического метода и применение его в различных областях химии и смежных наук, так как любые проблемы, которые разрешаются с помощью полярографии (изучение кинетики химических реакций, исследование состояния молекул в растворе и т. д.), основываются в первую очередь на аналитических данных. Существенным преимуществом полярографии является то, что она часто позволяет проводить одновременно как качественный, так и количественный анализ. [c.297]


    С изобретением цифровой электроники, микрокомпьютеров и т. д. большинство современных инструментальных методов анализа достигло высокой степени автоматизации. Полярография в этом отношении не составляет исключения, хотя продвижение в этой области было более медленным, чем в других областях инструментального анализа. Автоматизация на всех стадиях, в том числе на стадии подготовки пробы, эксперимента, регистрации данных и их интерпретации, если еще и не стала стандартной, то доступна в большинстве современных приборов, имеющихся в продаже. Некоторые полярографические методы легче поддаются автоматизации, чем постояннотоковый метод полярографии, и это, конечно же, с позиций современной аналитической химии следует рассматривать как достоинство. [c.301]

    Ввиду токсичности ртути и в связи с новейшими достижениями в области электрохимического концентрирования вещества на поверхности индифферентных твердых электродов, традиционные полярографические методы анализа вытесняются вольтамперометрическими на твердых электродах. Прямая вольтамперометрия методически и инструментально аналогична полярографии. Индикаторный электрод изготавливают из индифферентного электропроводящего материала (платины, золота, серебра, графита и других углеродных материалов). [c.746]

    Хроматографический и электрофоретический методы анализа дают возможность разделить сложные смеси, анализ которых обычными методами затруднен. Контролируют процесс по исчезновению исходных веществ или по накоплению продуктов реакции. Сочетание хроматографии и электрофореза с инструментальными методами анализа (колориметрия, спектрофотометрия, полярография и др.) позволяет определить количественное содержание того или иного вещества в продуктах реакции. [c.275]

    Ввиду кажущейся простоты потенциостатической кулонометрии ее часто полностью обходят молчанием или приводят в качестве малозначительного приложения при рассмотрении проблем полярографии в различных учебных курсах, посвященных инструментальным методам анализа. Однако этот метод заслуживает большего внимания не только потому, что он может быть полезным орудием в арсенале химика-аналн-тика, но и потому, что множество интереснейших вопросов должно быть разрешено в пределах самого метода. [c.8]

    Много книг имеется по спектральным методам анализа, хроматографии, полярографии и другим инструментальным методам анализа. Некоторые руководства, главным образом общего, теоретического характера, были упомянуты выше в разделе Физическая химия . Здесь мы перечислим лишь очень кратко важнейшие справочные издания, монографии и руководства. [c.231]


    Более десяти лет тому назад я принял предложение написать книгу о современных полярографических методах. Поворот к возрождению полярографии хорошо известен, но еще недавно не очень широко признавался, хотя этот метод инструментального анализа и был популярен до пятидесятых годов. Более того, многие аналитики-практики считали даже этот метод почти угасшим. Поэтому, когда я приступил к написанию книги, я решил, что главной задачей должна быть пропаганда достижений полярографического анализа, который в предстоящие годы должен стать методом, конкурентоспособным по отношению к известным инструментальным методам анализа, обычно доступным в хорошо оборудованной аналитической лаборатории. Однако современные методы полярографии теперь получили признание во всех частях света как часть арсенала средств, необходимых для анализа следовых количеств. Поэтому в настоящее время необходимость в пропаганде метода значительно уменьшилась. [c.10]

    Вначале нужно подчеркнуть, что автор адресуется к читателю, который использует или планирует использовать полярографию как современный инструментальный метод анализа. Это означает, что если выбор пал на полярографию, то, значит, она конкурентоспособна по сравнению с другими обычно используемыми аналитическими методами. На основе этого предположения первостепенное значение приобретает критерий, согласно которому этот метод поддается существенной автоматизации и потому пригоден для рутинного анализа. Как и при использовании других современных инструментальных методов, предполагается, что в выполнении и обсуждении эксперимента достигнут значительный прогресс. Например, полярографы с визуальной регистрацией в разделе, посвященном аппаратуре, рассматриваться не будут, несмотря на то что в некоторых случаях они могут сослужить полезную службу [1]. Будут опущены и некоторые другие проблемы, которые по традиции обсуждаются в связи с полярографической аппаратурой. [c.42]

    Необходимо ознакомить учащихся с правилами безопасной работы с различными электрическими устройствами. В учебных и производственных лабораториях широко применяется электрооборудование различного вида и назначения моторы разной мощности, выпрямители, трансформаторы. Внедрение в практику работы исследовательских и заводских лабораторий современных инструментальных методов анализа существенно расширяет круг приборов, требующих питания от электросети, среди них потенциометры, кондуктометры, полярографы, спектральные приборы, хроматографы различных типов и др. Во всех лабораториях имеется подводка электроэнергии сетевое напряжение 127 или 220 В. Для моторов и некоторых специальных приборов вводят трехфазный ток напряжением 380 В. [c.17]

    Настоящий обзор охватывает литературные данные до середины 1969 г., в основном не вошедшие в работы [4, 14]. Оценка инструментальных методов анализа пестицидов (в том числе полярографии) и тенденции их развития были изложены ранее [19]. [c.146]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    В связи с этим ощущается настоятельная потребность в издании такой книги, в которой в сжатой и доступной форме была бы изложена совокупность современных физико-химических методов анализа. Таких книг на русском языке пока почти нет. Имеющиеся книги либо предназначены для студентов техникумов, либо посвящены изложению отдельных методов анализа (колориметрии, спектральному анализу, полярографии и т. д.). Перевод книги американского профессора Г. В. Юинга Инструментальные методы химического анализа отчасти восполняет этот пробел. [c.5]

    Конечно, это описание так называемого возрождения сильно упрощено, так как на самом деле, если внимательно рассмотреть содержание научных журналов 50-х—60-х годов, полярографии никогда не угрожала опасность смерти. В эти годы, когда перспектива использования полярографии в анализе следов еще была под вопросом, было сделано много теоретических и экспериментальных работ в области переменнотоковой, импульсной полярографии, для полярографии с линейной разверткой потенциала и других разновидностей полярографии. По общему признанию, эти работы стимулировали в основном кинетические исследования и теоретическая электрохимия. Однако формулировка идей и результаты этих работ и привели к существенному усовершенствованию состояния знаний в аналитических областях. Аппаратура эволюционировала от века ручного полярографа до такого состояния, когда стали доступными эксперименты с полностью компьютерным контролем и автоматизацией. Теоретическая полярография в этот период далеко отстояла от практических приложений, но теперь эта работа дала нам прекрасные основы, систематическое использование которых значительно улучшило положение этого метода в лабораториях. И действительно, в настоящее время очень мало инструментальных методов имеют такие прекрасные теоретические основы. [c.13]


    Следует отметить, что наш опыт показывает, что в ультрамикроанализе весьма перспективными являются и другие инструментальные методы, например кулоно-метрия, полярография, высокочастотное титрование, а также микрохроматографический анализ. Большим достоинством книги является детальное описание техники выполнения аналитических операций, что дает возможность химику-аналитику получать вполне достоверные результаты. [c.6]

    В последние годы метод ТСХ как метод разделения все чаще сочетают с высокочувствительными инструментальными методами определения — спектрофотометрией, полярографией, радиоактивационным и кинетическим анализом. Метод ТСХ при этом перешел на более высокую ступень в своем развитии. [c.8]

    Разработанная рациональная совокупность методов охватывает определение около шестидесяти элементов Периодической системы. Среди них — основные элементы-органогены — углерод, водород, азот и кислород, а также многие неметаллы и металлы, называемые далее гетероэлементами. Созданные методы основаны на применении как модифицированных классических (экспресс-гравиметрия, титриметрия), так и инструментальных способов анализа (спектрофотометрия, полярография, кулонометрия, атомно-абсорбционный и рентгенофлуоресцентный анализ). [c.5]

    Практическое руководство по анализу горных пород и минералов. В книге наряду с классической схемой анализа силикатных пород, основанной на использовании гравиметрических и ти-триметрических методов определения элементов, рассмотрены также новые быстрые схемы, включающие современные методы анализа — спектрофотометрические, фотометрии пламени, полярографии, рентгеноспектральные и другие инструментальные методы. Много внимания уделено способам определения микроколичеств элементов. [c.4]

    В последние десятилетия в аналитической химии приобрели огромное значение физико-химические и физические методы анализа. Из них наиболее широко применяются хроматография, фотоэлектроколориметрия, полярография, люминесцентный анализ, спектральный анализ успешно развивается также радио-активационный анализ. Инструментальный анализ приобретает значительное место в практике, так как с его помощью во многих случаях можно автоматизировать аналитический контроль производства. [c.18]

    Все это неотъемлемо связано с использованием инструментальной техники анализа, ее преимущества. Однако разве не классическая аналитическая химия с ее осадками, растворами и т. д. обеспечила работу указанных выше инструментов Разве не сочетание того и другого, т. е. комбинирование классических методов обогащения и инструментальных методов измерения, дало наиболее прецизионные методы анализа, например, в полярографии и осциллографии, или в спектроскопии и т. д. Именно обогащение с помощью классической аналитической химии позволило поднять чувствительность многих инструментальных методов на порядки. С другой [c.9]

    Существующие стандартные методики [4] чаще всего удовлетворяют требованиям к анализу неорганических веществ в сточных водах. Тем не менее, для повышения точности и надежности, а также уменьшения времени, затрачиваемого на определение, широко используются инструментальные методы определения концентрации неорганических веществ в сточных водах газов (О2, СО2 и других)—газовая хроматография [17] ионов тяжелых металлов [18] — тонкослойная хроматография [19], полярография [4, с. 175, 284, 290, 300, 305], атомно-абсорбционная спектрофотометрия [20], пламенная спектрофотометрия [21], нейтронная активация [22] анионов — спектрофотометрия с лазерным возбуждением [23], флуоресцирующая спектрофотометрия [24] и др. [c.18]

    В исследовательском институте атомной энергии в Харуэлле (Англия) в 1950-х гг. появились идеи, которые ПОЗВОЛИЛИ сохранить полярографический метод в арсенале средств высокочувствительного анализа. Баркер с сотр. [12—22 наметил два основных пути снижения концентрации Сн, определяемой полярографией — методический и инструментальный. Первый из них состоит в предварительном электролитическом концентрировании определяемого. деполяризатора в объеме (или на поверхности) стационарного ртутного электрода (СРЭ) малой площади и последующей регистрации полярограммы электрорастворения продукт та электролитического, накопления. Второй путь основывается на изменении формы поляризующего напр я-жения и временной селекции регистрируемого тока в цепи электролизера. < [c.12]

    В учебных и производственных лабораториях при различных работах довольно широко используется металлическая ртуть. Она находится в стеклянных ртутных термометрах и мановакуумметрах, иногда используется как затворная жидкость в различных затворах, а также в ртутных вакуум-насосах. Ртуть используется при некоторых видах инструментального анализа, например при анализе методом полярографии с ртутным катодом. В лабораториях органической химии для синтеза иногда используют ртутные амальгамы. [c.12]

    Инструментальные методы анализа — количественные аналитические методы, для выполнения которых требуется электрохимическая оптическая, радиохимическая и иная аппаратура. К И, м. а. обыч1ю относят 1) электрохимические методы— потенциометрию, полярографию, кондуктометрию и др. 2) методы, основанные на испускании или поглощении излучения,— эмиссионный спектральный анализ, фотометрические методы, рентгеноспектральный анализ и др. 3) масс-спектральный анализ 4) методы, основанные на измерении радиоактивности. Имеются и другие И. м. а. [c.57]

    Лабораторный практикум включает 28 задач, из них две трети заканчиваются критическим разбором результатов исследования. Раздельно оцениваются возможности двух вариантов метода вольтамперометрии (и полярографии) с линейной и треугольной разверткой напряжения. Подобранные примеры иллюстрируют аналогичные возможности методов для определения микро- и на-нограммовых количеств катионов, анионов и различных классов органических и полимерных вёществ. Лабораторный практикум построен по принципу, близкому к программированному обучению (задача начинается с формулировки цели, эксперимент делится на этапы, результаты оцениваются критическим разбором и иногда контрольными вопросами). Часть предлагаемых задач опробована в учебном практикуме кафедры аналитической химии Казанского химико-технологического института им. С. М. Кирова в виде учебно-исследовательских задач по инструментальным методам анализа. Практикум систематизирует разрозненную информацию о мето- [c.3]

    Вторая глава посвящена основам современных инструментальных методов анализа, используемых при исследовании воздуха газовой, бумажной и тонкослойной хроматографии, полярографии, фотометрии в ультрафиолетовой и видимой областях спектра, атомно-абсорбционной спектрофотометрии и нейтронноактивационному анализу. [c.4]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    Введение инструментальных методов анализа, особенно физических, позволило значительно увеличить число одновременно определяемых ионов. Если в классическом методе анализа допустимо ограниченное качественное и количественное определение двух-трех ионов, то в методе кондуктометрии оно увеличивается до четырех-шести, в полярографии до восьми-двенадца-ти, а в спектральном и масс-спектральном это количество измеряется десятками. Эти же методы позволили значительно увеличить чувствительность определения. К 1975 г. она доведена до 10 моль/л, или 10 —10 % уверенных определений, а в некоторых случаях она может быть доведена до 10- —10- %. [c.310]

    Помимо чисто аналитических целей, полярографический метод может быть использован для изучения кинетики реакций, механизма реакций, кетоенольной таутомерии, цис-транс-тошерш, окислительно-восстановительных систем и ряда других интересных и важных проблем органической химии. Неудивительно поэтому, что в настоящее время полярографический метод становится не только одним из наиболее популярных инструментальных методов анализа, но и одним из важных физико-химических методов исследования органических веществ. Свидетельством этому служит непрерывно возрастаюш ее число публикаций по полярографии органических веществ, которое в настоящее время приближается к 1000. [c.10]

    Большой прогресс в изучешш микроэлементов в пищевых продуктах связан с успехами инструментальных методов анализа, в том числе эмиссионной спектроскопии, атомной абсорбщ1и, полярографии. Сначала большие надежды возлагались на методы эмиссионной спектроскопии, позволявшей из одной пробы проводить анализ большого числа элементов. Однако вскоре выяснилось, что на количественное определение сильно влияют присзггствие многих элементов в пробе ( матричный эффект ). Дня устранения влияния матричного эффекта рекомендуется готовить эталоны ( основы ) очень сложного состава, который сильно варьирует в зависимости от вида продукта [5]. При этом проверку правильности приготовления эталонов рекомендуется проводить другими независимыми методами (химическими, атомноабсорбционными и др.). Это сильно усложнило анализ, а без учета матричного эффекта метод эмиссионной спектроскопии для многих элементов вызовет ряд серьезных погрешностей [5]. Впрочем, во многих случаях и подобная фактически полуколичественная оценка представляет для гигиенистов определенный интерес и поэтому спектральные данные наряду с другими были использованы в настоящем справочнике (например, данные по бору, хрому, молибдену, алюминию). [c.341]

    Эта реакция лежит в основе наиболее популярного титриме-трического метода анализа витамина С. Она проста в исполнении благодаря легкости определения конечной точки титрования и без труда может быть использована для анализа растворов, содержащих довольно высокие концентрации витамина С. К сожалению, данный метод очень чувствителен к присутствию других восстановителей, с которыми витамин С часто соседствует в растворах (диоксид серы, таннины, ионы металлов, восстанавливающие сахара и т. п.). В каждом конкретном случае есть способы уменьшить влияние примеси, но устранить эффект всех примесных восстановителей в анализируемом растворе одновременно невозможно. И, конечно, если раствор первоначально окрашен, это маскирует изменение цвета вследствие реакции в таких случаж для определения конечной точки использовали разнообразные инструментальные методы, например, полярографию. [c.135]

    В другом методе [1262] для определения ЗЬ и других 13 примесей в двуокиси титана пробу разбавляют смесью пО с угольным порошком и вводят в канал угольного электрода спектры воз-бу ящают в дуге постоянного тока (10 а) и регистрируют кварцевым спектрографом большой дисперсии (0,3 нм/мм). При содержании 3(1 0,001 -5% коэффициент вариации составляет 3—20%. В титане и двуокиси титана ЗЬ > 5-10 % (5 = 0,03-=-0,12) определяют методом инструментального активационного анализа [68]. Методы с выделением ЗЬ из облученной пробы используют для ее определения в порошках двуокиси титана, рутиле и аиатазе [230] и в отдельных кристаллах двуокиси титана [1380]. Полярографическими методами определяют ЗЬ (а также Си) в двуокиси титана, рутиле, анатазе и бруките [1548]. В двуокиси титана 31 ) (0,01 — 0,2%) определяют на фоне М раствора НС1 [822]. Метод переменнотоковой полярографии рекомендован для определения ЗЬ в растворах сульфата титана. содержаш,их до 345 г/л ([V) и до 217 г л Ге [1174]. [c.152]

    Сборник посвящеи примейейию современных инструментальных методов в органической химии с целью элементного, функционального и вещественного анализа соединений. Включены работы по применению в практике органического анализа спектроскопии, спектрофотометрии, газовой и других видов хроматографии, потенциометрии, полярографии и прочих физических и физико-химических методов. [c.2]

    Полярография — первый инструментальный метод химического анализа, который нашел широкое применение еще В 1930-х годах и до сих пор не потерял своей актуальности. Новые методические приемы и принципиально новые приборы позволили расширить интервал определяемых концентраций на несколько порядков и значительно повысить разрешающую способность метода. Расширились невозможности использования полярографии в электрохимическйх исследо-ванияу. Обобщающая литература не успевает следить за бурным развитием новых вариантов полярографии, которые пока не нашли достаточного отражения в обзорах, учебных пособиях и монографиях. [c.6]

    Возможности использования новых инструментальных методов вольтамперометрии для анализа и электрохимических исследований всецело определяются аппаратурным оснащением метода. За рубежом в 1970-х го-. дах основное внимание уделяли развитию высокочувствительной дифференциальной импульсной вольтамперометрии, Однако за последние годы вновь возродился интерес к ВПТ, особенно в сочетании с быстрой разверткой напряжения [6], В СССР аналитическое при- боростроение пока отдает предпочтение ВПТ, поэтому отечественные аналитические лаборатории преимущественно оснащены полярографами переменного тока. [c.17]

    Классич. методами К. а. (т. наз. химич. методами К. а.) являются весовой анализ, основанный на измерении веса продукта реакции, в к-рой участвует определяемое вещество, п объемный анализ, заключающийся в измерении количества реактива, израсходованного на реакцию с определяемым в-вом (титриметрич. анализ), или изменепии объема анализируемого газа после поглощения к.-л. составной части газовый анализ). Известны и мн. др. методы определения, основанные на измерении физич. величин, зависящих от количества вещества. К этим методам относятся т. наз. физико-химич. и чисто физич. методы апализа. В их числе электрометрич. методы анализа, напр, полярография, кондуктометрия, потенциометрия, кулонометрия и др. оптич. методы анализа, напр, колориметрия, спектрофотометрпя, спектральные методы и др. (перечень основных методов приведен в ст. Аналитическая химия, т. 1, стр. 218). За иек-рыми исключениями все эти методы являются инструментальными, т. к. они требуют пспользования иных измерительных инструментов, чем весы и бюретки. Подробнее см. статьи об отдельных методах анализа, а также ст. Инструментальные лгетоды анализа. [c.321]

    Сигнал. Информация о качественном составе анализируемого образца, содержащаяся в его пробе, находит свое выражение в константах вещества 2 (рис. 1.1). Во многих методах инструментального анализа измерения проводят в интервале ги —> а появляющиеся сигналы непосредственно записывают при помощи регистрирующих приборов (рис. 1.1, б, разрев перпендикулярно плоскости у — г). Во многих случаях форму сигнала можно описать функцией Лоренца или Гаусса (рис. 1.1, а). В некоторых методах, например в полярографии, сигналы записывают в интегральном виде. Координата максимума сигнала или точки перегиба интегральной кривой соответствует определенному положению сигнала 2] в интервале 2о — 2ц. Для определения г используют вспомогательный графический прием (см., например, рис. 4.7). В общем случае максимум на кривой можно легко найти как точку перегиба кривой [1]. [c.14]


Смотреть страницы где упоминается термин Инструментальные методы анализа полярография: [c.180]    [c.320]    [c.321]    [c.180]    [c.25]    [c.262]    [c.142]    [c.237]    [c.281]   
Химия окружающей среды (1982) -- [ c.586 , c.587 , c.619 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ инструментальный

Методы анализа инструментальны

Полярограф

Полярография



© 2024 chem21.info Реклама на сайте