Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектроскопия углеводородов (Б. С. Юнг)

    МАСС-СПЕКТРОСКОПИЯ УГЛЕВОДОРОДОВ [c.335]

    МАСС-СПЕКТРОСКОПИЯ УГЛЕВОДОРОДОВ ззд [c.339]

    С помощью ЯМР и масс-спектроскопии изучено распределение дейтерия в этих углеводородах, полученных при циклизации [c.124]

    Применение комплекса современных физических и химических методов исследования (молекулярная перегонка, хроматография, кристаллография, инфракрасная спектроскопия и масс-спектроскопия, комплексообразование с карбамидом и тиокарбамидом) к изучению строения высокомолекулярных парафинов позволило сделать новый шаг к более глубокому познанию химической природы этого важного и широко распространенного в природе класса углеводородов. Полученные новые экспериментальные данные не только не поколебали, но еще более подкрепили некоторые из основных положений о химической природе парафинов и церезинов, к которым пришли различные исследователи на основании применения других, преимущественно химических и физико-химических методов. [c.107]


    Масс-спектроскопия. Метод используют для установления группового и гомологического состава углеводородов [15]. В последнее время этим методом стали определять и сернистые соединения нефти [16]. Предварительно были выбраны и изучены характеристические ионы однотипных по строению групп сернистых соединений. При отсутствии,или малом содержании насыщенных углеводородов ошибка определения содержания сернистых соединений не превышает 10 отн. % если насыщенные углеводороды составляют более 5—7 вес. %, ошибка достигает 20 отн. %. Ме,тод удобен для анализа смесей сернистых соединений, содержащих не более [c.80]

    Масс-спектроскопия. Масс-спектральный метод анализа основан на ионизации потоком электронов в паровой фазе под глубоким вакуумом исследуемой углеводородной смеси. Образующийся при этом поток ионов в магнитном поле делится на группы в зависимости от их масс. Ионизацию ведут таким путем, что происходит не только ионизация, но и распад молекул углеводородов с образованием осколочных ионов. Между структурой соединения и его масс-спектром существуют определенные зависимости, которые и положены в основу количественного анализа этим физическим методом. Для каждого класса углеводородов характерно образование определенного ряда осколочных ионов. В магнитном поле, в зависимости от массы и заряда, полученные ионы движутся по различным траекториям. В конечном итоге ионы направляются на фотопластинку, и на ней получается масс-опектр. Каждый углеводород дает на масс-спектрограмме свои характерные полосы, по которым ведется в дальнейшем расшифровка спектрограмм. [c.62]

Таблица 3.1 Непредельные и ароматические углеводороды смолистых кубовых остатков от производства изопрена (по данным масс-спектроскопии) Таблица 3.1 Непредельные и <a href="/info/7163">ароматические углеводороды</a> смолистых кубовых остатков от производства изопрена (по <a href="/info/1012639">данным масс</a>-спектроскопии)
    Большое значение в изучении химического состава алканов должны иметь методы хромато-масс-спектроскопии в сочетании с синтезом и исследованием свойств эталонных углеводородов. Необходима также разработка новых методов, позволяющих более четко разделять разветвленные алканы от сопутствующих им циклопарафинов. [c.236]


    Весьма перспективны методы масс-спектроскопии, основанные на точном измерении масс ионизированных частиц и молекул посредством разделения в пространстве и во времени заряженных частиц, имеющих различные величины отношения их массы к величине заряда. Разделения достигают, пропуская такие частицы через электрическое и магнитное поля. Разделенные в масс-спектрографе пучки частиц различной массы в своей совокупности образуют спектр , фиксируемый на фотографической пластинке в виде ряда отдельных линий. Можно определять содержание примесей в анализируемом образце вещества до 0,0001%. Точность анализа равна 0,1—0,2%. Проводят анализы углеводородов, сталей, газов, нефти. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения их компонентов. Масс-спектральный метод комбинируют также с хроматографией (см. ниже), инфракрасной и ультрафиолетовой спектроскопией. [c.568]

    Газ из полиэтилена содержит небольшое количество углеводородов процентное содержание их зависит от типа полиэтилена [С43, 061, Ы6, М61]. Углеводороды могут возникать при разрыве связей С—С в точках разветвления. В соответствии с данными масс-спектроскопии, радиолиза низкомолекулярных [c.186]

    Диспропорционирование, как можно ожидать, с ростом температуры усиливается по сравнению с рекомбинацией радикалов и в соответствии с этим выход деструкции растет с температурой от 0 = 2,2 при —196° до 0=5,0 при 20° и до 0=10 при 90° [А9]. Ненасыщенность образуется в соответствии с уравнением (7), но выход приблизительно в два раза больше, чем можно ожидать. Это, возможно, объясняется тем, что происходит разрыв боковых цепей, причем образуется газ и остается ненасыщенность в главной цепи. Разрыв боковых цепей можно было бы сопоставить с легкостью протекания многократных разрывов по данным масс-спектроскопии разветвленных углеводородов [c.191]

    Для исследования процессов деструкции наполненных полимеров используют масс-спектрометры типа МХ 1303 [145 хромато-масс-спектрометры типа К-10-10-С (Франция) [150 Преимуществом масс-спектрометрии является возможность исследования небольших количеств образцов (1 мг) при программированном изменении температуры в достаточно широком интервале и при различных скоростях нагрева. Масс-спектро-скопический анализ позволяет идентифицировать значительное число летучих продуктов деструкции и характеризовать кинетику процессов образования отдельных продуктов [150]. Так, при исследовании термодеструкции полимерных композиций на основе полиэтилена с помощью хромато-масс-спектроскопии удалось идентифицировать более 50 соединений, в основном углеводородов С2-18- При разложении полиэтилена в присутствии кислорода число продуктов увеличивается до 70, и среди них появляются кислородсодержащие соединения, нанример СО2, формальдегид, ацетальдегид, ацетон, акролеин, альдегиды и др. [150]. Интересно отметить, что при различных соотношениях полимера и нанолнителя изменяется число и состав продуктов термораспада. Это обусловлено различной степенью сшивания полимера в межфазном слое. [c.118]

    В некоторых случаях посредством спектроскопических методов можно определять типы углеводородов, входящих в состав исследуемого продукта. Например, с помощью ультрафиолетовой спектроскопии можно определять содержание ароматики, с помощью масс-спектроскопии — содержание алканов, цикланов, алкенов и ароматики в прямогонных и вторичных бензиновых фракциях [49]. [c.14]

    Масс-спектроскопия основана на разделении заряженных частиц переменной массы способами электрического и магнитного полей. Основными частями масс-спектрометра являются ионизационная камера (ионы в ней образуются при электронной бомбардировке газообразных веществ), электрический потенциал для того, чтобы ускорить движение ионов, и магнитное поле, которое индуцирует угловое отклонение. Если изменить силу либо электрического, либо магнитного полей, то ионы могут быть соответственно разделены и собраны на основе отношения массы к заряду. Углеводороды ионизируют для того, чтобы получить определенные обрывы цепей. Так как такие обрывы характерны для углеводородного ряда, то поэтому возможны типовые анализы узкокипящих фракций в газообразных нефтепродуктах, смазочных маслах и парафинах однако [219—220] могут встречаться и смешанные структуры [222]. Необходимо использовать стандарты для калибровки спектрометра. [c.191]

    С помощью масс-спектрограмм можно определить молекулярную массу углеводорода по самому тяжелому иону — молекулярному иону. Масс-спектроскопия позволяет проводить анализ довольно сложных газовых углеводородных смесей. Для получения данных по количественному составу нефтяной фракции масс-спект-рограмму этой фракции необходимо сравнивать с масс-спектро-граммами индивидуальных углеводородов. С помощью системы уравнений можно определить количественный состав анализируемой смеси. Предположим, что смесь из трех ко.мпонентов дает спектрограмму из 10 пиков. Вклады компонентов в образование пиков различны. Каждый пик может соответствовать попу, но- [c.36]


    Ароматические углеводороды относительно легко удается выделить из высокомолекулярной части нефти в виде концентратов, однако последние нелегко разделить на компоненты. В случае сернистых нефтей основная часть сераорганических соединений, близких по структуре ароматическим углеводородам, сосредоточивается в ароматических концентратах. Но даже при отсутствии сераорганических соединений нелегко разделить сложную многокомпонентную смесь, состоящую из наиболее сложно построенных гибридных молекул. Решить эту проблему можно только при использовании большого комплекса химических методов (избирательное гидрирование и дегидрирование, комнлексообразование, окисление) и физических (хроматография с использованием разных адсорбентов и элюантов, термодиффузия, масс-спектроскопия, инфракрасная и ультрафиолетовая спектроскопия, люминесценция и др.). Главная задача состоит в том, чтобы прежде всего выделить и установить структуру тех компонентов, которые составляют основную массу смеси. На эту задачу еще много десятилетий тому назад обращал внимание Д. И. Менделеев. В последнее время эта мысль Менделеева все чаще привлекает внимание исследователей. [c.299]

    Усовершенствования, внесенные за последнее время в методику масс-спектрометрического анализа, позволили применить ее и к относительно высококипящим нефтяным фракциям. Однако спектры различных типов соединений, составляющ их масляные фракции, обычно накладываются друг на друга, поэтому масс-спектрометрический анализ этих фракций приходится сочетать с предварительным разделением их па более однородные группы. Чем однороднее исследуемый продукт по типу углеводородов и молекулярному весу, тем более точные данные могут быть получены о структуре и характере составляющих его углеводородов. При масс-спектроскопии, например, газойлевых и масляных фракций различных нефтей, предварительно лишенных ароматической части (адсорбцией на силикагеле или алюмогеле), удается установить количественно содержание парафиновых и нафтеновых углеводородов, характер строения нафтеновых углеводородов, пяти- и шестичленных колец в них, а также структуру парафиновых углеводородов, содержание в них изоцепей и в некоторых случаях даже характер этих цепей. Аналогично определяется строение ароматических, нафтено-ароматических углеводородов и их сернистых производных с указанием не только группового содержания их во фракциях нефти (включая и высококипящие), но и количества отдельных циклических структур. [c.9]

    Кроме того, эти фракции могут изучаться более углубленно и подвергаться дальнейшему разделению на компоненты с применением препаративной хроматографии, экстракции и т. д. При групповом анализе определяют отдельно содержание парафиновых, нафтеновых, ароматических и смешанных углеводородов. При структурно-групповом анализе углеводородный состав нефтяных фракций выражают в виде среднего относительного содержания в них ароматических, нафтеновых и др. циклических структур, а также парафиновых цепей и иных структурных элементов. С применением физических методов хромато-масс-спектроскопии, масс-спектроскопии, ЯМР-, ИК-спектроскопии и т. д. рассчитывают качественный и количественный состав узких нефтяных фракций. В настоящее время определение полного углеводородного состава возможно только для легких и средних фракций. [c.47]

    Внедрение новых методов исследования, особенно газовой хроматографии с использованием высокоэффективных капиллярных колонок и программирования температуры, методы хромато-масс-спектроскопии, синтез большого числа индивидуальных углеводородов — все это позволило решать такие проблемы химии насыщенных углеводородов, выполнение которых было невозможно еще лет 10—12 назад. Успехи в анализе сложных углеводород ных смесей нашли свое отражение в исследованиях состава и строения углеводородов нефти. Именно в эти годы в работах отечественных и зарубежных ученых была показана сложность и своеобразность строения нефтяных углеводородов, а также была найдена связь между нефтяными углеводородами и важнейшими природными соединениями (изопреноиды, стераны, тритерпаны и т. д.). Особенно большие успехи были достигнуты в изучении алифатических углеводородов нефтей. [c.3]

    D26. М i 1 s о П1 D., Масс-спектрометр II лаборатория контроля. (Применепие масс-спектроскопии к обычному анализу легких углеводородов в процессах переработки нефти.) Petrol Refiner, 26, 719—725 (1947). [c.638]

    Гидродесульфурирование индивидуальных сульфидов на конечных стадиях выделения приводит к индивидуальным углеводородам, которые идентифицируют методами газо-жидкостной хроматографии (ГЖХ), ИК- и масс-спектроскопии. С помощью такой комбинации методов были идентифицированы алифатические сульфиды и монотиацикланы главным образом в бензиново-лигроиновых фракциях нефти [84, 167—169]. Для средних и высших фракций потенциальные возможности такого сочетания методов не используются полностью вследствие отсутствия эталонов. [c.26]

    Интересно отметить, что когда уже велись первые успешные работы в этой области, один из основателей метода, Астон, довольно осторожно расценивал применение масс-спектроскопии в химико-аналитическом аспекте. В своей книге, изданной в 1942 г. в Лондоне [2], он писал Ириверженцы этого метода утверждают, что возможно дать качественный и количественный анализ неизвестной смеси газообразных углеводородов с точностью, большей, чем +5% от каждой составляющей . Осторожность Астона, несомненно, объяснялась значительной сложностью метода, усугублявшейся в то время недостаточным развитием стандартной, надежной вакуумной техники п радиоэлектроники. Именно развитие этих двух областей превратило масс-спектрометрию в метод, нашедший широкое практическое применение. [c.456]

    Принятый в органической масс-спектроскопии постулат о том, что в молекулярном ионе положительный заряд локализуется, как правило, на каком-либо атоме или группировке, имеющей р-или я-электроны, видимо, достаточно близок к истине, поскольку распад такого иона протекает с расщеплением прежде всего связей, соседних с предполагаемым местом локализации заряда. Это обстоятельство позволяет обобщить все имеющиеся факты и рассматривать основные закономерности фрагментации соединений, содержащих обобщенную гетероатомную функциональную группу, связанную с алифатическим, алициклическим или ароматическим (гетероароматическим) радикалом. Естественно, что перед этим необходимо рассмотреть закономерности распада самих углеводородов, не содержащих каких-либо функциональных групп. Прежде чем приступить к дальнейшему изложению материала, следует подчеркнуть, что в большинстве случаев отсутствуют какие-либо доказательства того, что образующиеся при распаде в масс-спектрометре фрагменты с определенной массой и элементным составом имеют действительно ту структуру, которую им приписывают на предлагаемых многочисленных схемах фрагментации, т. е. изображение процессов диссоциативной ионизации в терминах и символах структурной органической химии, строго говоря, условно, поскольку в возбужденном ионе вполне вероятно и в ряде случаев даже доказано протекание глубоких процессов перестройки структуры и некоторого перемешивания (англ. рандомизация или скрем-блинг) атомов водорода и углерода. В результате практически все предлагаемые механизмы и схемы распада имеют отчасти спекулятивный характер. Несмотря на это они [c.43]

    Восстановление полициклических хиноновых красителей до родственных углеводородов — один из наиболее широко применяющихся методов. Образующиеся углеводороды или их гетероциклические аналоги могут быть идентифицированы с помощью бумажной, тонкослойной и газожидкостной хроматографии, ИК-и масс-спектроскопии и т. п. С целью восстановления карбонильные соединения подвергают перегонке с цинковой пылью [5] (см. также раздел 1.2.) или обрабатывают расплав хинона цинковой пылью, хлоридом цинка и поваренной солью при 310 °С [57]. В числе других реагентов можно назвать циклогексоксид алюминия в циклогексаноле [58], никель Ренея [59], боргидрид натрия и эфират трифторида бора [60]. [c.308]

    ИК-, УФ- и масс-спектроскопия, газо жидкостная и тонкослойная хроматографии и целый ряд других физических методов эксперимента широко применяются сейчас для дальнейшего детализированного изучения выделенных сераорганических соединений, а также продуктов их гидрообессерива-ння — смесей углеводородов. Так, Оболенцев и Айвазов ii3b], выделив Из бензиновой фракции туймазинской нефти через ртутно-ацетатные комплексы сумму сернистых соединений (сульфидов), идентифицировали с помощью газо-жпдкостной хроматографии три диалкилсульфида и производные тиофана. [c.41]

    В последнее время для детального изучения масляных фрак ций стали применять также масс-спектроскопию и спектроскопию в ультрафиолетовой области. Такие детализированные исследования весьма трудоемки. Более доступными являются методы. группового анализа. Однако само понятие о групповом анализе для масляных фракций отличается от аналогичного понятия для бензино-керосиновых фракций. Как уже неоднократно подчеркивалось, в высокомолекулярных погонах нефти преобладают смешанные гибридные углеводороды с разным числом колец и самых различных гомологических рядов. Именно поэтому в последнее время отказались от широко распространенного ранее метода анилиновых точек определения ароматических, нафтеновых и парафиновых. углеводородов, в котором удаление ароматических углеводородов проводилось серной кислотой. Принципиальный недостаток этого метода — отнесение к ароматическим всех сульфирующихся углеводородов, в которых доля ароматического кольца может быть очень невелика. Кроме того, весьма приблизительны и расчетные коэффициенты. Четкое разделение компонентов масляных фракций на группы углеводородов с общей эмпирической формулой пока еще неразрешимая задача. Кроме того, исследование химического состава масел находится еще на таком уровне, что не реальна даже сама постановка этого вопроса, так как точно не известно, какие именно группы высокомолекулярных углеводородов присутствуют в нефти. Поэтому, когда говорят о групповом составе, масляных фракций, то имеют в виду лишь те группы углеводородов с более или менее общими свойствами, которые на современном этапе удается концентрировать и отделять друг от друга путем избирательной адсорбции на некоторых адсорбентах. [c.139]

    Посторонние вкусы и ароматы у сидра могут вызываться самопроизвольной контаминацией — например, углеводородами при хранении рядом с нефтепродуктами или другими материалами. Это подтверждается результатами анализа экстрактов вкусо-ароматических соединений методами газовой хроматографии или масс-спектроскопии — структура контаминирующих соединений отличается от структуры соединений, обычно присущих алкогольным напиткам. Тем не менее многие источники побочных привкусов и запахов эндогенны или могут возникать вследствие дисбаланса в естественном профиле вкуса/аромата сидра из-за действия микроорганизмов. Например, в небольшом количестве в состав сидра входят и желательны этилфенол, этилкатехол и этилгваякол, но, если нежелательное воздействие бактерий или дрожжей Brettanomy es приводит к [c.115]


Смотреть страницы где упоминается термин Масс-спектроскопия углеводородов (Б. С. Юнг): [c.75]    [c.47]    [c.105]    [c.641]    [c.129]    [c.206]    [c.282]    [c.16]    [c.43]   
Смотреть главы в:

Химия углеводородов нефти. Т.1 -> Масс-спектроскопия углеводородов (Б. С. Юнг)




ПОИСК





Смотрите так же термины и статьи:

Масс-спектроскопия



© 2025 chem21.info Реклама на сайте