Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аппарат моделирование

    Изучение скоростей реакций позволяет выяснить истинный механизм протекания сложных химических превращений. Это в свою очередь создает перспективы для нахождения путей управления химическим процессом, т. е. его скоростью и направлением. Выяснение кинетики реакций позволяет осуществить математическое моделирование реакций, происходящ 1х в химических аппаратах, и с помощью электронно-вычислительной техники задачи оптимизации и автоматизации химико-технологических процессов. [c.192]


    За последние годы литература по научным основам химической технологии значительно обогатилась, особенно в части теории химических реакторов, математических методов моделирования и оптимизации химико-технологических процессов. При этом широко используется метод теоретических обобщений, так хорошо себя оправдавший в общеинженерном курсе процессов и аппаратов химической технологии. [c.5]

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]

    В качестве формального аппарата моделирования дискретных процессов использованы теория дискретных множеств, конечные автоматы, сети Петри, логико-предикатные модели. [c.6]

    Сети Петри применяют, главным образом, для моделирования так называемых интерактивных операций или взаимодействий, когда в операции принимает участие несколько (не менее двух) технологических аппаратов. Моделирование взаимодействий выполняют с целью выявления дополнительных ресурсов системы, обнаружения конфликтных ситуаций для последующего управления процессом взаимодействия аппаратов. Моделирование взаимодействия аппаратов в химико-техиологических системах с переменной структурой сетями Петри описано в разделе 2.4. Однако сетями Петри можно успешно моделировать и более простые, на пример, последовательные процессы в аппаратах периодического действия. Конечно, сеть Петри моделирует не сами технологические процессы, а лишь их последовательность, как результат выполнения некоторых условий. [c.130]


    Математический аппарат моделирования больших систем в настоящее время разработан достаточно полно [12, 13]. [c.17]

    Использует математический аппарат моделирования больших систем [13] при построении математических моделей производства и его организации, руководствуясь при этом следующими положениями  [c.17]

    Новая модель динамики является также удобным аппаратом моделирования хаотических реакций. [c.181]

    Для иллюстрации проведенных на ЭВМ расчетов аппаратов охарактеризуем результаты математического моделирования реакторов гидрокрекинга бензина и газойля. Найдено, что увеличение числа секций реактора гидрокрекинга бензина выше трех не приводит к ощутимому улучшению результатов процесса. Ниже приведено рекомендуемое распределение потоков сырья и объемов катализатора по слоям при гидрокрекинге бензинов (объемная скорость по свежему сырью 1,5 ч-, кратность циркуляции водородсодержащего газа 1000 м /м , температура на входе в реактор 350 °С, давление 1 МПа)  [c.153]

    Теория подобия — аппарат моделирования. Метод подобия подробно изучается в курсе процессов и аппаратов химической технологии. Поэтому здесь мы коснемся лишь некоторых особенностей применения подобия при моделировании, необходимых для понимания дальнейшего. Из книг, излагающих теорию подобия, можно рекомендовать следующие [3, 4, 15]. [c.12]

    Теория подобия — аппарат моделирования [c.14]

    Исторически в исследованиях наибольшее распространение получил метод физического моделирования, согласно которому связи между физическими величинами устанавливаются только в пределах данного класса явлений. В таком случае основные уравнения, опис ыв щие процесс, преобразуются в группу критериев подобия, которые являются инвариантными к масштабам реактора. Это позволяет результаты исследований на модели переносить (масштабировать) на промышленный аппарат. Поскольку химический процесс характеризуется одновременно р личными классами физических и химических явлений, то при физическом моделировании его с изменением масштаба физической модели реактора инвариантности критериев подобия достичь не удается. Стремление сохранить при изменении масштабов постоянство одних критериев приводит к изменению других и в конечном счете к изменению соотношения отдельных стадий процесса. Следовательно, перенос результатов исследования с модели реактора на его промышленные размеры становится невозможным. При математическом моделировании указанное ограничение автоматически снимается, так как необходимости в переходе от основных уравнений к форме критериальной зависимости здесь нет, нужно иметь лишь описание химического процесса, инвариантного к масштабам реактора. При этом количественные связи, характеризующие процесс, отыскиваются в форме ряда чисел, получаемых как результат численного решения на электронных вычислительных машинах. [c.13]

    Изучение и оптимизация флотационного разделения развиваются по трем направлениям моделирование поверхностных явлений и разработка реагентных режимов моделирование гидродинамики процесса и разработка аппаратов моделирование и оптимизация схем обогащения. Указанные направления практически не взаимосвязаны. В дальнейшем будут рассмотрены некоторые аспекты второго направления, в том числе проблемы масштабного перехода. [c.182]

    Анализ является важнейшим этапом проектирования процессов перегонки и ректификации и характеризуется определением оптимальных режимных параметров процесса и конструктивных размеров аппаратов при заданных технологических требованиях и ограничениях на процесс. Анализ сложных систем ректификации проводится методом декомпозиции их на ряд подсистем с де-тальным исследованием полученных подсистем методом математического моделирования. Проведение анализа сложных систем возможно также при одновременном решении всех уравнений си-стемы с учетом особенностей взаимного влияния режимов разделения в каждом элементе системы. Последний метод анализа является более перспективным для однородных систем сравнительно небольшой размерности, так как в этом методе не требуется рассмотрения сложной проблемы оптимальной декомпозиции системы. [c.99]

    При построении комбинированной модели принимают, что аппарат состоит из отдельных зон, соединенных последовательно или параллельно, в которых наблюдаются различные структуры потоков. С увеличением количества зон можно описать процесс любой сложности, но математическое моделирование при этом усложняется. [c.41]

    Для наглядности равенства (11.35) и (11.37), связывающие X и у при = 1, а также значение величины селективности V изображены в виде кривых на треугольной диаграмме (рис. 12). Из анализа кривых следует, что с увеличением степени превращения X скорость побочной реакции увеличивается, при этом селективность уменьшается в обоих типах реакторов, всегда оставаясь меньшей в реакторе полного перемешивания. Например, при степени превращения X = 0,6 селективность процесса в реакторе полного вытеснения составляет 0,61, а в реакторе полного смешения — только 0,4. Снижение селективности наблюдается и при переходе от реактора периодического действия к реактору непрерывного действия, что весьма существенно при моделировании и объясняется различным уровнем концентрации целевого продукта в начальный и конечный моменты времени пребывания в аппарате. [c.34]


    Для решения подобных и других задач очень важно вооружить химмотологию соответствующей теорией и практикой моделирования процессов с применением современного математического аппарата и электронно-вычислительной техники. [c.13]

    Для повышения масштаба простых единичных процессов, таких как транспортирование материалов, массообмен или разделение веществ, можно пользоваться расчетными методами. Однако во многих случаях, когда применяются аппараты новых типов, сложные многофазные системы или вещества с недостаточно исследованными физико-химическими свойствами, приходится использовать моделирование как более точный метод масштабирования. [c.446]

    Увеличение масштаба при приближенном моделировании. В этом случае физические свойства системы могут быть одинаковы в модели и образце. Кроме того, мы должны стремиться к достижению в обоих аппаратах одинаковой степени диспергирования, выраженной через средний диаметр капель (пузырей) или величину межфазной поверхности. Это возможно только при реализации приближенного подобия аппаратов с мешалками (явления, оказывающие незначительное влияние на ход процесса, не учитываются). [c.450]

    Масштабирование теплообменников. Моделирование теплообменников находит применение в тех случаях, когда отсутствуют эмпирические формулы для их расчета (сложные нетиповые аппараты) или когда неизвестны физико-химические данные, позволяющие вычислить коэффициенты теплообмена (редко встречающиеся вещества). Моделируя нетиповой аппарат для хорошо изученных систем, можно, в принципе, использовать в модели другое вещество, чем в образце. Когда неизвестны физико-химические свойства потоков, для которых проектируется аппарат большего масштаба, обязательно нужно применять одинаковые вещества в модели и образце. [c.452]

    Моделирование характеристик ступеней центробежного компрессора проводилось на основе опытных данных для всех исследованных колес в полном соответствии с методами, изложенными в предыдущих главах. Численный эксперимент выполняется при Мц = 0,815ч-1,63 и различных способах регулирования производительности поворотом лопаток диффузора и входного регулирующего аппарата (ВРА). При этом использовались характеристики колес, полученные без закрутки потока при входе, и обобщенная характеристика лопаточного диффузора о-к = /( к.сз, Мс,), справедливая, как уже отмечалось, в широком диапазоне изменения углов установки лопаток. Как физический, так и численный эксперименты проводились в основном на хладагенте К12, свойства которого наиболее сильно отличаются от свойств идеального газа. Термогазодинамические параметры рабочего вещества определялись методом условных температур, а показатель изоэнтропы и сами условные температуры рассчитывались так, как показано в предыдущем параграфе. [c.201]

    Применяя на практике теорию моделирования, мы должны ограничиться повышением масштаба трубчатых реакторов лишь в несколько раз. Дальнейшее увеличение масштаба требует, как правило, изменения конструкции реактора или условий его работы. Примером может служить использование в большем масштабе многотрубчатого реактора вместо реакционного аппарата, представляющего собой единичную трубу. [c.471]

    Поскольку с уменьшением масштаба опытных работ снижаются затраты на их проведение, возникает вопрос, как далеко можно экстраполировать результаты лабораторных или опытных установок. На этот вопрос нельзя дать исчерпывающий ответ. Однако, по-видимому, полагают, что моделирование, как правило, удовлетворительно осуществляется по стадиям, в которых размер аппарата последовательно увеличивается в 5—10 раз. При этом [c.339]

    Кинетические коэффициенты процессов тепло- и массообмена, а также химических реакций, базирующиеся на модели идеального противотока, характеризуют не истинные, а лишь кажущиеся скорости протекания этих процессов и не могут быть приняты ни для моделирования и масштабирования лабораторных моделей, ни для оценки эффективности действующих, а также выбора и проектирования новых промышленных аппаратов. Надежными являются лишь те кинетические параметры и зависимости, которые [c.8]

    Гидравлическое моделирование колонных аппаратов базируется на возможности распространения количественных зависимостей параметров потока, полученных в опытах с малыми аппаратами, на аппараты промышленных масштабов. Это положение, очевидно, правомерно при физической адекватности теоретической модели реальным условиям в аппарате данной конструкции. Разумеется, речь идет о приближенной адекватности, так как никогда нельзя добиться (в этом и нет необходимости) полного соответствия теоретической модели реальному физическому процессу. [c.95]

    Расчетные профили масс и температур по длине аппарата н данные промышленной установки приведены на рис. 40. Установлено, что соответствие расчетных и промышленных данных удовлетворительное, т. е. полученная структура математического описания может быть использована для моделирования и оптимизации процесса. [c.142]

    Совпадение результатов расчетов с экспериментальными данными изотермического процесса для гидрокрекинга бензинов показано выше, а для гидрокрекинга газойля —в табл. 22. Хорошая точность расчетов обосновывает использование математических описаний для моделирования промышленных аппаратов. [c.153]

    Плодотворный подход к моделированию пористых сред с привлечением математического аппарата комбинаторной топологии сформулирован в работе [40] на примере построения математического описания процесса спекания металлического порошка. Главным достоинством данного подхода является его инвариантность по отношению к непрерывным деформациям, происходящим в процессе спекания частиц порошка. Параметрами в топологической модели (Рине) являются число частиц Р и число связей между ними С, через которые по формуле Эйлера определяется род поверхности С, ограничивающий спекающееся тело С = = С — Р + 1. Род поверхности С связан с ее Гауссовой кривиз- [c.133]

    При формировании аппарата управления НПО и ПТО рекомендуется использование методов структуризации целей и методов экономико-организационного моделирования. [c.63]

    При использовании любого из описанных выше лабораторных аппаратов для моделирования процессов, происходящих в данной точке промышленной насадочной колонны или на данной тарелке тарельчатой колонны, может оказаться необходимым, чтобы и значение ка (а не только к ) в лабораторной модели было таким же, как и в промышленном аппарате. В дисковом и шариковом абсорберах значения кд можно регулировать, изменяя расход газа через аппарат. Порядок величин к для дисковой колонны назван выше (см. раздел УП-1). В ячейке с мешалкой для регулирования кд можно соосно с мешалкой для жидкости установить специальную мешалку для газа. [c.180]

    Монография посвящена одной из самых актуальных проблем современной химической технологии — расчету аппаратуры каталитических процессов на основе количественного описания физико-химических явлений в реакторах. В книге подробно рассмотрены теория и методы расчета химических реакторов для контактных процессов, вопросы использования математического моделирования и методов теории подобия при оптимальном проектировании и проектировании конкретных аппаратов для процессов синтеза аммиака, окисления двуокиси серы, каталитического крекинга нефтяных фракций и др. [c.4]

    Работу по изучению фармакокинетики абергипа проводили в два этапа. На первом этапе изучали процесс абсорбции вещества в условиях опыта in vitro, используя аппарат моделирования процесса абсорбции фирмы Сарториус (Германия). На втором этапе проводили [c.222]

    Математически аппаратом моделирования является теория подобия. Условием подобия называют ситуацию, при которой правомерно перенесение результатов опыта с модели на оригинал. Рассмотрим, например, течение жидкости в каналах разных размеров. Условием подобия здесь будет равенство чисел Рейнольдса в оригинале Кеор и в модели Кем  [c.45]

    На современном этапе развития химической технологии вопросы теории комплексных химико-технологических систем и отдельных аппаратов (моделирование и оптимизация), а также изыскание путей повышения питенсивпости и надежности работы отдельных агрегатов и всей системы в целом приобретают особую актуальность. Существенную роль в решении этих вопросов играет учение о рециркуляционных процессах. [c.3]

    Следует продолжать развитие математического аппарата моделирования и программирования. При этом необходимо подчеркнуть, что при разработке алгоритмов и составлении программ должно быть разумное сочетание универсальности и специализированности [13]. Соотношения между ними должны определяться при участии специалистов в области геохимии подземных вод. [c.234]

    В /чебном пособии рассмотрены основные понятия и определения, принятые в моделировании химико-технологических процессов на ЭВМ. Приведены методы построения математических моделей. Рассмотрены типовые модели структуры потоков в аппаратах и математические описания некоторых химических, тепло-обменных и массообменных процессов. [c.2]

    Поля скоростей в больших промышленных аппаратах (а) могут быть проанализированы непосредственным замером распределения скоростей в малой, геометрически подобной модели (м) с засыпкой зерен меньшего, чем в основном аппарате, размера. При таком гидравлическом моделировании [88] необходимо, чтобы критерии Рейнольдса для зернистого слоя в аппарате Rea, а и модели Неэ, м находились в области, охватываемой одинаковым законом сопротивления (прн / = idem). [c.72]

    Добиться полного подобия модели и образца удается в немногих простых случаях. Как правило, когда в аппарате проходит одновременно несколько элементарных процессов, условия подобия некоторых из них могут быть противоречивы. В таких случаях применяется приближенное моделирование. Оно основано на соблюдении условий подобия только наиболее важных процессов и соответствующих им полей физических величин (например, в реакторе — подобие химических превращений и полей концентраций реагентов). При повышении масштаба обычно приходится отказываться от геометрического подобия и довольствоваться геометрически родственными системами. Правильное осуществление приближенного моделирования также позволяет определить количественно ход процесса в большом масштабе, однако приходится считаться с тем, что при слишком большом расхождении масштабов может вoзникнytь значительная разница между моделью и образцом, обусловленная не учтенными нами явлениями (так называемые эффекты повышения масштаба). Иногда эти эффекты так велики, что ограничивают диапазон использования метода моделирования повышением масштаба всего лишь в несколько раз. [c.444]

    Известно, что ширина фронта может быть с достаточной точностью охарактеризована величиной 4 / . Расчет проведем для твердых частичек с 10" м, рд=3000 кг/м , осаждающихся в воде (р = = 1000 кг/м , 10 Па- с). При этом Аг = 1 Ю , Ке = 120, и = = 0,08 м/с. Полагая = 1 10 м /с, а для величины 4>/ при А = 2ми/г = 10м будем иметь значения 0,28 м и 0,63 м, что составляет, соответственно, 14 % и 6,3 % величины И. При увеличении критерия Аг а следовательно, и скорости осаждения частиц значение величины будет падать. Как видим, продольная дисперсия волны за счет мелкомасштабной псевдотурбулентной диффузии невелика. Влияние инерции частиц, как следует из соотношения (2.184), делает ее еще меньше. Это дает основание полагать, что в рамках одномерного подхода приближение 1/Ре< 1, рассмотренное в нредьщущем разделе, может с достаточной для инженерных расчетов точностью использоваться при моделировании переходных гидродинамических процессов в аппаратах и в тем случаях, когда Единственным условием при [c.145]

    Как уже говорилось в главе VI, процесс, протекающий в наса-дочном аппарате, можно анализировать, рассматривая движение по колонне ди( еренциального элемента жидкости, принимаемого за беспроточный абсорбер идеального смешения. Условия, обеспечивающие моделирование поведения насадочной колонны изменениями, происходящими в таком дифференциальном беспроточном абсорбере, можно выразить следующим образом. Отношение числа молей не- [c.182]


Смотреть страницы где упоминается термин Аппарат моделирование: [c.560]    [c.42]    [c.45]    [c.56]    [c.13]    [c.451]    [c.113]    [c.119]    [c.233]   
Перемешивание и аппараты с мешалками (1975) -- [ c.27 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.27 ]




ПОИСК







© 2025 chem21.info Реклама на сайте