Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация веществ по их строению и типу связей

    Классификация веществ по строению и типу связей [c.346]

    Что же касается общетеоретических вопросов, то при описании многих тем школьного курса химии учение о периодичности позволяет глубже раскрыть их содержание. Так, при изучении водных растворов следует обратить внимание на свойства растворителя (вода) и свойства растворяемых веществ (типы связи, строение молекулы, степени окисления), которые определяют такое свойство веществ, как их растворимость, поведение в воде (электролитическая диссоциация, гидролиз, окисление—восстановление). При описании состава химических соединений следует обратить внимание на взаимосвязь классификации соединений по составу с положением элементов в системе (совокупность свободных атомов, номер группы и периода). Это дает возможность устанавливать связи между разными классами соединений (оксиды, фториды, хлориды, гидриды, интерметаллиды) и видеть особенности каждого из них по составу (насыщенные или ненасыщенные молекулы), по агрегатному состоянию и строению (водородные соединения неметаллов, как правило, газообразны при обычных условиях, гидриды типичных металлов — ионные кристаллы) и т. п. [c.71]


    Классификацию веществ (схема 3.9.) нельзя дать только на основе какого-то одного критерия. Это сильно обеднит представления учащихся о веществе. Так, например, неорганические вещества учащиеся классифицируют вначале по составу. После изучения электронного строения вещества появляется новый принцип классификации веществ по строению вещества — по видам химической связи и по типам кристаллической решетки. Этот принцип классификации веществ получает свое развитие в темах Теория электролитической диссоциации, где разбирается донорно-акцепторный механизм ковалентной связи, а также в теме Металлы, где изучаются металлическая связь и металлическая кристаллическая решетка. [c.259]

    После изучения теории электролитической диссоциации вещества рассматриваются с позиции ионных представлений, развивается понятие о ионах. В разделе Ионная связь приводились как пример только простые ионы. Теперь уже говорится о сложных ионах, образованных разными элементами, например сульфат-ионе 804 , нитрат-ионе N03 и т. п. Вводятся новые принципы классификации веществ на электролиты и неэлектролиты, на сильные и слабые электролиты. Отмечается влияние типа химического строения на поведение веществ в растворе. С позиции теории электролитической диссоциации учащиеся изучают свойства электролитов в растворах, химические свойства кислот, оснований, амфотерных гидроксидов и солей, совершенствуя понятие об этих классах веществ. Их свойства рассматривают в процессе выполнения лабораторных опытов и при решении экспериментальных задач. Изучается также поведение веществ в окис-лительно-восстановительных реакциях. Дальнейшее рассмотрение веществ в последующих темах осуществляется уже с [c.263]

    В основе органической химии, как и 100 лет назад, лежит созданная А. М. Бутлеровым теория химического строения органических соединений. В настоящее время она дополнена более глубоким пониманием природы химической связи, причин протекания реакций. В один ряд с бутлеровской классификацией по строению молекул встала другая классификация — по типам реакций. Именно раскрытие природы органических реакций позволило подходить к превращениям органических веществ не как к набору разнородных, трудно запоминаемых частных случаев, а как к стройной системе. [c.10]


    Наиболее характерной особенностью полиоз является многообразие типов связей между элементарными звеньями в макромолекулах. В макромолекулах целлюлозы и крахмала, которые относятся к наиболее распространенным в природе полисахаридам, основным видом связей являются связи 1—4. Такие связи встречаются и в полиозах, но этот тип связи не является ни единственным, ни основным. В полиозах могут содержаться все возможные связи между 1-м атомом углерода одного звена и 2-м, 3-м, 4-м и 6-м атомами углерода соседнего звена, причем в одной и той же макромолекуле могут быть связи различных типов. Нередки случаи, когда одно звено соединяется одновременно с 3—4 звеньями, и в результате макромолекулы имеют сильно разветвленную форму. Принцип классификации полиоз на основании химического состава и строения элементарного звена позволяет наиболее целесообразно распределить все полиозы в группы по характерным и вполне определенным признакам. Бесспорно, что при распределении индивидуальных полисахаридов по группам встречается ряд трудностей, однако эти затруднения обусловлены не дефектами вышеприведенной классификации, а исключительно недостаточной изученностью полиоз. В частности, в ряде случаев трудно решить вопрос о том, является ли данное вещество смесью индивидуальных полисахаридов или представляет собой смешанный полисахарид, макромолекула которого состоит из остатков нескольких моноз. Обычные физические методы разделения полисахаридов не всегда дают достоверные результаты, так как некоторые из них могут обладать одинаковыми или очень близкими физическими свойствами. [c.507]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Точное название ЭО можно дать лишь по основному веществу, что оправдано преимущественно для мономерных продуктов. В олигомер-гомологических смесях можно выделить группу олигомерных соединений идентичного строения. Номенклатура ЭО тесно связана с их классификацией. Общепринятая классификация ЭО отсутствует каждый автор пользуется своей [1—51. Наиболее последовательно ЭО классифицируются автором [2]. Исходя из химического строения целесообразно по типу ЭГ выделить две основные группы ЭО I — ЭГ входит в состав алифатической цепи (алифатические ЭО) П — ЭГ связана с алифатическим пяти- или шестичленным циклом, например [c.8]

    Задачи и методы выявления закономерностей и особенностей фрагментации органических соединений принципиально отличаются от задач и методов структурного анализа и идентификации неизвестных веществ по их масс-спектрам прежде всего тем, что строение изучаемых соединений известно. Конечная цель такого исследования впервые синтезированных или ранее не охарактеризованных веществ — связь спектральных признаков со строением веществ и получение данных о механизмах фрагментации отдельных соединений, их совокупностей со сходными элементами структуры или, чаще всего, целых классов (гомологических рядов). Это подразумевает выявление основных направлений распада молекулярных ионов, классификацию этих процессов, соотнесение всех интенсивных сигналов спектра с соответствующими осколочными ионами и установление связи таких осколочных ионов с теми или иными структурными фрагментами молекул. Чаще всего результатом подобного исследования является формулировка правил интерпретации спектров, пригодных для структурного анализа неизвестных соединений этого же типа. Полученные данные нередко представляют в виде схем фрагментации как индивидуальных соединений, так и, в общем виде, гомологических рядов. При этом следует учитывать, что структуры осколочных ионов обычно неизвестны, и на таких схемах их предпочтительнее изображать брутто-формулами. [c.50]

    Несмотря на принципиальное отличие структуры, кристаллические и аморфные тела можно противопоставлять друг другу в основном лишь при сравнении их механических свойств. Для физической же химии твердого тела наибольшее значение имеют транспортные свойства, связанные с явлениями переноса вещества и электричества и определяющими подвижность частиц во внешних полях—химическом, электрическом, тепловом и др. Такие свойства в значительной мере общи для кристаллических и аморфных тел и определяются, главным образом, характером химической связи, который в свою очередь непосредственно связан со строением электронных оболочек атомов, образующих твердое тело. Поэтому тип химической связи обычно кладут в основу физико-химической классификации твердых тел [1, 2]. [c.11]


    Далее он указывает на то, что идея механических типов постепенно изживает себя, так как соединения, содержащие несколько многоатомных элементов, можно относить к разным типам и, следовательно, типическая классификация становится излишней. Наоборот, атомность элементов начинает играть все большую роль, ибо химические свойства сложного тела условливаются преимущественно химическим отношением элементов, его составляющих . Далее А. М. Бутлеров дает определение химического строения в переводе с немецкого оно звучит так Полагая, что каждому химическому атому свойственно лишь определенное и ограниченное количество химической силы (сродства), с которым он принимает участие в образовании тела, я назвал бы химическим строением эту химическую связь или способ взаимного соединения атомов в сложном теле . Применяя современную нам терминологию, можно сказать, что химическое строение молекулы сложного вещества — это определенный способ соединения между собой составляющих ее атомов, зависящий от их валентности. [c.219]

    Из сказанного не следует делать вывод, что вообще не нужно пользоваться типической номенклатурой. Научной классификации на основе химического строения должна соответствовать научная номенклатура, которая в первую очередь подчеркивает генетическое сходство веществ, связанных общностью строения углеродного скелета. Однако, поскольку никакая схема классификации не может учесть всех реально существующих связей и частных точек зрения, может оказаться необходимым подчеркнуть эти, вообще говоря, второстепенные, но для того или иного случая актуальные связи. Можно выделить, например, тип уксусной кислоты и отнести к нему такие соединения, как триметилуксусная кислота, фенил-уксусная кислота, индолилуксусная кислота. [c.38]

    Далънодействующая хгшическая связь условно может быть разделена на два типа универсальную межмолекулярную связь и специфическую межмолеку-лярную связь. Универсальная связь проявляется при взаимодействии между любыми молекулами, а специфическая — между теми, у которых имеются соответствующие друг другу участки. Такие молекулы, которые соответствуют друг другу как к каждому замку должен быть свой ключ , называются комплементарными. Подробнее с проявлениями различных видов химической связи мы познакомимся ниже при обсуждении конкретных вопросов строения и свойств вещества. Примеры некоторых видов химической связи в изложенной классификации приведены на рис. 4.14. [c.115]

    Сейчас присутствие в нефтях некоторых разветвленных лкайоЁ реликтового типа, называемых также биологическими метками, или биологическими индикаторами, используется для таксонометрических оценок состава и строения исходных нефтематеринских веществ различных геологических периодов. Данные о содержании эт11х углеводородов могут служить не только для определения источников нефтеобразования, но могут использоваться также для изучения процессов миграции углеводородов в земной коре. Поэтому точное определение концентрации этих углеводородов в нефтях сможет в какой-то мере помочь решению главной проблемы нефтяной геологии — определению закономерностей образования и размещения нефтяных месторождений. И наконец, концентрационное распределение изомерных алканов может быть использовано в целях химической классификации нефтей, так как из всех групп углеводородов нефти именно углеводороды ряда метана в наибольшей степени изменяют свой состав при переходе от одних нефтей к другим. Это связано с тем, что концентрационное распределение этих углеводородов весьма чувствительно к составу исходного нефтематеринского вещества и к химическим процессам его преобразования. [c.238]

    Согласно этой классификации, лекарственные вещества подразделяются в общепринятом в химии порядке на неорганические и органические. Неорганические вещества рассматриваются по группам элементов периодической системы Д. И. Менделеева и основным классам неорганических соединений элементы, окислы, кислоты, основания, соли Органические вещества делятся на производные алифатического, алицикличе-ского, ароматического и гетероциклического ряда и далее подразделяются по основным классам органических соединений углеводороды, галоидо-производные, спирты, альдегиды и кетоны, кислоты, эфиры и т. д. гетероциклические соединения рассматриваются по группам, объединяющим производные отдельных гетероциклов (см. стр. 19). Присутствие в одной и той же химической группе веществ с различной физиологической активностью не лишает систему необходимой стройности, а лишь выявляет тесную связь между строением веществ и их физиологическим действием. В некоторых случаях, когда группа лекарственных веществ генетически связана (по химическим и фармакологическим признакам) с веществами иной химической структуры, представляется рациональным отклониться от чисто химической классификации и рассматривать такие вещества совместно. Например, большая группа местноанестезирующих средств типа новокаина, являющихся эфирами Р-диалкиламиноэтанола в п-аминобензойной кислоты, обязана своим возникновением изучению [c.17]

    Вследствие сложной Зр-гибридизации 2р- и 25юрбитапей кислорода с участием вакантных юрбиталей атомов металлов образуются дополнительные донорно-акцепторные - р )-связи. Предложены классификации [82, 83] неорганических стеклообразных веществ. Однако существующие систематики предназначены для обеспечения технологических нужд и не вскрывают особенностей химического строения и, свойств различных типов стекол. Поэтому целесообразно рассмотреть другой вариант классификации неорганических стеклообразных веществ. Ввиду того, что практически все элементы Периодической системы Д.И. Менделеева могут входить в структуру и состав стекол (отсюда трудность общей систематизации), мы при систематизации, как было изложено выше, придерживались точки зрения А. Винтер [84] об определяющей роли р-электронов в образовании каркасов стеклообра-зователей. В основу классификации положено различие в электроотрицательности атомов внутри стеклообразующей сетки (цепей), В соответствии с известными представлениями Полинга относительно зависимости степени ковалентности связи от разности электроотрицательностей атомов определена ковалентность связи и оцениваются межмолекулярные взаимодействия. [c.6]


Смотреть страницы где упоминается термин Классификация веществ по их строению и типу связей: [c.195]    [c.328]    [c.177]    [c.382]   
Смотреть главы в:

Анорганикум. Т.1 -> Классификация веществ по их строению и типу связей




ПОИСК





Смотрите так же термины и статьи:

Вещества строение

Вещество классификация

Классификация связующих веществ

типы связ



© 2025 chem21.info Реклама на сайте