Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полисахариды смешанные

    Гетерополисахариды. В растениях распространены сложные углеводы, являющиеся продуктами поликонденсации разных моносахаридов, т. е. полисахариды смешанного состава. Макромолекулы таких полисахаридов могут содержать остатки разных гексоз, но имеются и такие, которые состоят из пентоз и гексоз. [c.373]

    Получен целый ряд новых полимеров полимеров с сопряженной системой связей и комплексных полимеров, обладающих высокой термостойкостью, полупроводниковыми и другими ценными свойствами. Но наиболее разительные успехи за последние годы достигнуты в области биологически активных полимеров, так называемых биополимеров, к которым относятся белки, нуклеиновые кислоты, многие полисахариды и смешанные полимеры, содержащие, например, белковую и углеводную или углеводную и липидную компоненты. [c.8]


    Ограничимся разбором путей установления структуры полисахаридов, хотя они далеко не исчерпывают структурные задачи, возникающие в химии углеводов. Для этого есть две причины. Во-первых, полисахариды (включая сюда смешанные биополимеры) представляют собой наиболее важный объект углеводной химии. Во-вторых, установление строения полисахаридов включает основные типы структурных задач, в том числе установление строения моно- и олигосахаридов, а применяемые для этой цели методы являются наиболее общими и употребительными инструментами химии сахаров в целом. [c.50]

    Сам по себе природный объект, например полисахарид или смешанный углеводсодержащий биополимер, часто бывает столь сложным, что непосредственно понять его свойства и функцию на молекулярном уровне современной науке оказывается не под силу. И тут неоценимую помощь оказывают упрощенные модели такого полимера, включающие определенные элементы его структуры. Такую роль, например, играют олигосахариды по отношению к полисахариду или полисахаридные цепи гликопротеина по отношению к природному гликопротеину. Источником подобных упрощенных систем может служить, с одной стороны, сад[ исходный биополимер, а с другой — их химический синтез. [c.116]

    Реакции синтеза смешанных и особенно разветвленных полисахаридов пока остаются неясными. [c.334]

    В монографию включены главы, касающиеся биохимии моно- и полисахаридов, а также глава о смешанных биополимерах, в состав которых входят олиго- и полисахариды. Эти главы изложены химическим языком с использованием современной биохимической терминологии, что делает их особенно ценными для биохимиков, желающих познакомиться с химией углеводов. [c.2]

    Биополимеры живой клетки — белки, полисахариды, нуклеиновые кислоты и липиды образуют субклеточные структуры, соединяясь между собой более или менее прочными связями. Это могут быть ионные или водородные связи, которые легко диссоциируют, причем биологический комплекс распадается на свои компоненты. С другой стороны, белки, полисахариды, нуклеиновые кислоты, липиды могут соединяться между собою ковалентными связями в этом случае они называются смешанными биополимерами. [c.565]

    Как указывалось в гл. 18, наиболее трудоемкой операцией является разделение смесей родственных полимеров. Это особенно остро сказывается при разработке методов выделения смешанных углеводсодержащих полимеров, многие физико-химические свойства которых аналогичны свойствам белков, полисахаридов или липидов, присутствующих в тех же биологических объектах. С большой осторожностью следует применять. [c.565]


    Для оценки биологических функций биополимера необходимо иметь четкое представление о том, в каких биологических структурах находится данный биополимер и какие его свойства необходимы для успешного функционирования этих структур необходимо также связать свойства биополимера с химической структурой. Поэтому вначале кратко будет рассмотрено современное состояние вопроса о цитохимической и гистохимической локализации углеводсодержащих биополимеров и вопроса о связи структуры и биологической функции полисахаридов. В пределах этой главы мы не будем проводить четкого различия между полисахаридами и углеводсодержащими биополимерами смешанного типа, поскольку биологические функции последних чаще всего связаны именно с присутствием в составе молекулы углеводных остатков. С другой стороны полисахариды обычно встречаются в клеточных структурах в виде комплексов различной степени прочности с другими природными биополимерами. [c.598]

    ПУТИ БИОСИНТЕЗА ПОЛИСАХАРИДОВ И УГЛЕВОДНЫХ ЦЕПЕЙ СМЕШАННЫХ БИОПОЛИМЕРОВ э БИОСИНТЕЗ ЛИНЕЙНЫХ ГОМОПОЛИСАХАРИДОВ [c.609]

    ПУТИ РАСПАДА ПОЛИСАХАРИДОВ И УГЛЕВОДНЫХ ЦЕПЕЙ СМЕШАННЫХ БИОПОЛИМЕРОВ [c.615]

    Несомненно, что и биологические функции, и механические свойства полисахаридов и углеводсодержащих биополимеров в большой мере определяются конформацией макромолекулы и распределением в ней реакционноспособных групп. Все эти факторы зависят, в конечном счете, от первичной структуры полимера. Поэтому понимание факторов, определяющих специфичность биологической функции углеводсодержащих соединений и технические свойства полисахаридов, зависит в первую очередь от развития теоретических представлений о связи между строением, конформацией, реакционной способностью и физико-химическими свойствами полисахаридов и смешанных биополимеров, содержащих олиго- и полисахаридные цепи. Установление этих связей является предпосылкой для осуществления направленного синтеза соответствующих физиологически активных веществ и направленной модификации полисахаридов для получения материалов с заранее заданными свойствами. Поэтому исключительно важной задачей является разработка надежных методов установления первичной структуры полисахаридных цепей, требующих минимальной затраты времени и минимального количества материала. Не менее важны эффективные подходы к точной характеристике конформаций полисахаридной цепи в целом и отдельных ее участков, вплоть до моносахаридных звеньев. Очевидна также необходимость изучения реакционной способности полисахаридной цепи, ее отдельных звеньев и различных функциональных групп, что позволит понять механизм взаимодействия углеводсодержащих биополимеров с их партнерами в биологических системах (например, с антителами при иммунологических реакциях), наметить целесообразный путь модификации природного полимера для придания ему нужных свойств и т. д. [c.625]

    Сложнейшим элементом исследования полисахаридов и углеводсодержащих смешанных биополимеров является выделение индивидуальных соединений. Даже отделение примесей неуглеводного характера в ряде случаев представляет собой трудно разрешимую задачу, но главной проблемой остается разделение на компоненты смесей полисахаридов, получаемых при экстракции разнообразных природных объектов. Несмотря на быстрый прогресс в технике разделения смесей высокомолекулярных соединений, требуются значительные усилия для усовершенствования имеющихся и создания новых способов выделения индивидуальных полисахаридов и смешанных углеводсодержащих биополимеров. Мало удовлетворительны и аналитические методы контроля индивидуальности выделяемых веществ. [c.632]

    В заключение следует подчеркнуть, что совершенствование методов изучения структуры полисахаридов приобрело особое значение в самые последние годы, когда выяснилась исключительно важная биологическая роль смешанных углеводсодержащих биополимеров, при установлении строения которых возникает ряд дополнительных трудностей. Для разрешения этой проблемы необходима разработка методов избирательных расщеплений, позволяющих выделить как полисахаридные и белковые или липидные участки молекулы в отдельности, так и фрагменты, содержащие узлы связи между этими участками. С другой стороны, уже известные методы изучения полисахаридных структур нуждаются в модификации для непосредственного исследования углеводных цепей смешанных биополимеров. [c.635]

    Целлюлоза - это полисахарид, макромолекула которого построена из повторяющихся звеньев - остатков Р-О-глюкопиранозы с общей формулой (СбНюОз) (см. главу 9). Макромолекулы гемицеллюлоз построены из остатков различных моносахаридов, пентоз и гексоз, а также уроновых кислот. Большей частью все нецеллюлозные полисахариды - смешанные полисахариды. В анализе древесины их условно подразделяют на пентоза-ны (С5Нв04) и гексозаны (СбНю05) (см. главу 11). [c.185]


    Полисахариды являются потенциальными модификаторами биохимических реакций - противоопухолевыми средствами. За рубежом на основе этого класса соединений разработаны и применяются в медицинской практике препараты крестин, шизофиллан, лектинан. До настоящего времени точно не установлено, какие структуры элементов полисахаридов ответственны за иммуностимулирующее действие, однако имеются сведения, что этим действием обладают фруктаны, глюко-маннаны и гетеро полисахариды смешанной структуры [2]. [c.263]

    В классической классификации полиозы разделяются на пенто-заны, гексозаны и полиурониды. Однако это грубая классификация, которая не учитывает, что большинство полисахаридов смешанные, т. е. построенные из звеньев моносахаридов, принадлежащих к разным группам. Стюарт [133] предложил систему классификации, основанную на поведении полиоз при их отделении от целлюлозы. Полиозы, которые можно извлечь из холоцеллюлозы, называют нецеллюлозными гликозанами, а остающиеся в холоцеллюлозе — [c.85]

    Совершенно очевидно, что азотистые соединения имеют биогенное происхождение. Весьма вероятно, что порфириновые группировки создавались еще живыми организмами и перешли в нефть в качестве унаследованного продукта. С другой стороны, источником азотистых соединений могли быть белковые йещества, потому что белки содержат до 15—19% азота. Так как белки характерны главным образом для животных организмов, именно эти последние рассматривались как исходный материал нефти. В результате распада белков образуются различные аминокислоты с одной или двумя карбоксильными группами, если распад белков происходил в анаэробных условиях. В случае аэробного разложения белков азот выделяется в виде аммиака. Анаэробное разложение белков дает кроме аминокислот некоторые циклические соединения, содержащие пироллоповые или пирролидоновые циклы. Если исходный материал нефти содержал полисахариды, возможна реакция их альдегидной группы с аминогруппой аминокислот, При этом образуются темные продукты конденсации. Этой реакции приписывается большая роль при образовании углей из смешанного целлюлозно-лигнинового материала. Продукты конденсации аминокислот с целлю лозным материалом, так называемые меланоидины, возможно, могли бы дать циклические азотистые соединения, по своему строению достаточно далекие от исходных форм. Однако все эти предположения требуют еще прямых доказательств. [c.166]

    Широко распространены в животном и растительном мире смешанные высокомолекулярные соединения, открытые в последние годы. Это — белки, содержащие одновременно углеводную или липидную компоненту либо связанные с нуклеиновыми кислотами, и полисахариды, содержащие белковую или липидную, или ту и другую компоненты. Смешанные высокомолекулярные соединения выполняют чрезвычайно ответственные функции в организме. Они определяют групповую принадлежность организма человека и животных и специфичность микробов, играя, по-видимому, видную роль в явлении иммунитета. Смешанные высокомолекулярнь]е соединения входят в состав нервных и соединительных тканей организма, секреторных жидкостей, участвуют в регулировании нервных процессов. Некоторые ферменты и гормоны, регулирующие жизнедеятельность организма, также относятся к смешанным высокомолекулярным соединениям. [c.14]

    К сополимерам относятся белки, лигнин, нуклеиновые кислоты, смешанные полисахариды, а также многие синтетические высокомолекулярные соединения. Например, сополимер винилхлорида СНг=СНС1 и винилацетата СН2=СН может быть схематически изображен [c.26]

    Между этими крайностями имеются всевозможные системы, содержащие больше или меньше белковой компоненты и больше или меньше полисахаридной. Такие соединения называют гликопротеинами, а также протеогли-канами (гликаны — общее название полисахаридов). Точного определения у этих терминов нет, и те или иные классы биополимеров называют либо гликопротеинами, либо протеогликанами, руководствуясь при этом скорее традицией, чем какими-либо четкими критериями. Аналогично обстоит дело с ковалентно связанными углеводами и липидами их называют гликолипидами, а также линонолисахаридами. Весь же тип природных высокомолекулярных соединений, включающих ковалентно связанные фрагменты полимеров более чем одного класса, называют смешанными биополимерами, а в последнее время — гликоконъюгатами. [c.44]

    Структуры смешанных биополимеров чрезвычайно сложны, а их подробное изучение в сущности лишь только начинается. В отличие от полисахаридов систематически описать и классифицировать типы структур смешанных биополимеров весьма затруднительно прежде всего из-за ограниченного количества надежно и полно расшифрованных структур. Укажем лишь, что связь олиго-или полисахаридной компоненты с пептидной, белковой или липидной осуществляется обычно при помощи гликозидной связи либо по гидроксильным группам (например, в остатках оксиаминокислот пептидной цепи), либо по амидной группе амидов двухосновных аминокислот. Возможна также фосфодиэфирная связь, подобная той, которая лежит в основе строения нуклеиновых кислот. [c.44]

    БИОПОЛИМЕРЫ (от греч bios-жизнь и polymeres-состоящий из многих частей, многообразный), прир высокомол соединения, являющиеся структурной основой всех живых организмов Обеспечивают их нормальную жизнедеятельность, выполняя разнообразные биол. функции К Б относятся белки, нуклеиновые кислоты, полисахариды Известны также смешанные Б, напр липопротеины (комплексы, содержащие белки и липиды), гликопротеины (соед, в молекулах к-рых олиго- или полисахаридные цепи ковалентно связаны с пептидными цепями), липополисахариды (соед., молекулы к-рых построены из липидов, олиго-и полисахаридов) [c.289]

    Из изложенного следует, что сырьем для синтеза всех гемицеллюлоз с их разнообразным составом является сахароза. Из нее в живых тканях растений образуются глюкоза, манноза, галактоза, ксилоза, арабиноза, рамноза и глюкуроновая и галактуроно-вая кислоты, которые затем используются растением для синтеза разнообразных смешанных гемицеллюлозных полисахаридов. [c.330]

    При гидролизе нецеллюлозных полисахаридов образуются соответствующие моносахариды. В гидролизатах найдены главным образом следующие моносахариды из пентоз D-ксилоза и L-арабиноза из гексоз D-манноза, D-галактоза, D-глюкоза, D-фруктоза из метилпентоз L-рамноза и L-фукоза, а также из гексуроновых кислот D-глюкуроновая, 4-0-метил-0-глюкуроновая и D-галактуроновая кислоты (схема 11.1). На схеме наряду с проекционными и пространственными формулами Хеуорса приведены для пиранозных циклов конформации кресла С1. Для фураноз-ных циклов возможны два типа конформации конверт (Е) и твист-конформация (Т). Большая часть гемицеллюлоз и других нецеллюлозных полисахаридов в отличие от линейного гомополисахарида - целлюлозы представляет собой смешанные полисахариды (гетерополисахариды). Цепи многих из них разветвлены. Все они нерегулярны. Это делает невозможной 1фисталлизацию нецеллюлозных полисахаридов в древесине и увеличивает их растворимость. [c.270]

    В смешанном полисахариде всегда можно выделить главный составляющий моносахарид, который образует основную долю звеньев главной цепи, а также может входить и в боковые ответвления. Основными звеньями полиуроновых кислот (полиуронанов) служат остатки гекс- [c.272]

    Смешанные полисахариды называют с учетом всех составляющих моносахаридов, указывая последним преобладающий моносахарид с заменой в его наименовании окончания оза на ан . Названия других составляющих звеньев указывают в виде приставок в порядке увеличения доли этих звеньев, например, арабиноглюкуроноксилан, галактоглюко-маннан и т.п. Однако в литературе употребляют также краткие названия смешанных полисахаридов, например, ксиланы (полисахариды, состоящие главным образом из звеньев ксилозы), маннаны и т.д. [c.273]

    Ксиланами называют полисахариды, макромолекулы которых построены главным образом из звеньев ксилозы - остатков P-D-ксилопира-нозы. Все ксиланы представляют собой смешанные полисахариды. Исключением служит однородный ксилан (гомоксилан) тростника альфа (эспарто). Это разветвленный полисахарид, в главной цепи которого остатки p-D-ксилопиранозы соединены гликозидными связями 1 4. Ксиланы остальных растений имеют гомополимерную главную цепь. Однородные линейные ксиланы обнаружены только в водорослях. [c.303]

    Маннанами называют полисахариды, макромолекулы которых построены главным образом из звеньев маннозы - остатков Р-В-маннопиранозы. Однородные маннаны (гомоманнаны) встречаются редко. Широко распространены смешанные маннаны, преимущественно разветвленные, с гетерополимерной главной цепью, состоящей из звеньев [c.306]

    К гексозанам наряду с маннанами и глюканамн относят галактаны. Галактанами называют полисахариды, макромолекулы которых построены главным образом из звеньев галактозы. Галактаны сравнительно широко распространены в природе, но в древесине они содержатся в небольших количествах (массовая доля 0,5...3%), как в хвойных, так и в лиственных породах. Исключением является саксаул, древесина которого содержит до 9% галактана. Возможно, что именно гидрофильный галактан обусловливает способность произрастания саксаула в жарком сухом климате на солончаковых почвах. В различных видах лиственницы содержится смешанный полисахарид арабиногалактан. Галактаны и арабиногалактаны растворимы в воде. [c.313]

    В настоящее время считают, что в большинстве случаев галактаны входят в комплекс пектиновых веществ (см. 11.9.2). Из-за трудностей выделения водорастворимых полисахаридов в чистом и неизмененном виде не всегда удается различить однородные и смешанные галактаны. По мере углубления исследований строения и состава галактанов прищли к мнению, что в древесине хвойных, а также, вероятно, и лиственных пород присутствуют скорее всего не гомогалактаны, а смешанные галактаны, в том числе кислые, содержащие звенья уроновых кислот. Из смешанных галактанов в древесных породах наиболее распространены разветвленные арабиногалактаны разного строения. Арабиногалактан характерен для древесины лиственницы разных видов. Арабиногалактан лиственницы -это смешанный сильно разветвленный полисахарид, главная цепь которого построена из звеньев р-О-галактопиранозы, соединенных гликозидными связями 1->3. К главной цепи присоединены боковые ответвления -остатки а- и Р-Ь-арабинофуранозы, присоединенные гликозидными связями 1->6. Соотношение звеньев галактозы и арабинозы в макромолекуле составляет примерно 6 1, но может колебаться (даже у одного и того же ботанического вида) в довольно широких пределах от 9,8 1 до 2,6 1. Степень разветвленности (число и длина боковых ответвлений) варьируется. [c.314]

    Арабинаны - это полисахариды, макромолекулы которых построены главным образом из звеньев арабинозы. Однако вопрос о существовании индивидуального полисахарида гомоарабинана в древесине окончательно не выяснен. Арабинан вообще щироко распространен в природе и в больших количествах присутствует в растениях, богатых пектиновыми веществами (см. 11.9.2). Вероятнее всего, арабинан в пектиновых веществах химически связан с другими компонентами, но сравнительно легко от них отщепляется. Как уже отмечалось выше, L-арабиноза входит также в состав некоторых смешанных полисахаридов - арабиноглюкуроноксилана, арабиногалактана. При гидролизе древесины всю арабинозу практиче- [c.317]

    Среди всех других классов углеводов именно полисахариды привле кают сейчас наиболее пристальное внимание биохимиков и других спе циал истов, связанных с проблемами биологии. Это объясняется тем, чт( структура полисахаридных цепей во многих случаях определяет биоло гическую специфичность, как, например, в случае полисахаридов микро организмов. По этой причине химия полисахаридов тесно связана с хими ей смешанных биополимеров, имеющих в своем составе полисахаридны [c.9]

    Некоторые сложные эфиры карбоновых кислот и углеводов распространены в природе. Так, например, известны частично ацетилированные сахара, входящие в состав антибиотиков, сердечных гликозидов достаточно широко распространены частично ацетилированные полисахариды. Особое место занимают эфиры сахаров с аминокислотами, так как именно-они в ряде случаев осуществляют связь белковой и углеводной компонент в смешанных биополимерах. В последнее время из различных микроорганизмов выделены сахара, ацилированные высшими жирными кислотами. Широко распространены в природе также эфиры ароматических, карбоновых кислот, в частности таннины, которые представляют собок эфиры глюкозы и галловой, дигалловой и полигалловой кислот. Таннины-применяются в промышленности как дубильные вещества. [c.133]

    Химия кетоз представляет собой значительно более сложную и менее изученную область химии моносахаридов, чем химия альдоз. Кетозы в меньшей степени распространены в природе, чем альдозы, а их природные представители менее разнообразны. Из всех кетоз наибольшее значение имеет Л-фруктоза, играюш,ая наряду с глюкозой первостепенную роль в энергетическом обмене углеводов (см. гл. 13). Л-Фрукто-за входит в состав ряда растительных полисахаридов, а также и олигосахаридов, в том числе в состав важнейшего из них — сахарозы. В ограниченном числе природных объектов обнаружены также -сорбоза Д-тагатоза Л-псикоза и Ь-трео-пентулоза . Представитель высших кетоз — седогептулоза и фосфаты пентулоз играют центральную роль в процессе фотосинтеза (см. гл. 13). В полисахаридах бактериальных стенок обнаружены 2-кето-З-дезоксиальдоновые кислоты. К 2-кето-З-дезоксиальдоновым кислотам относятся и сиаловые кислоты — важнейшая группа моносахаридов, входящих в состав смешанных углеводсодержащих биополимеров (см. гл. 12 и 21). Эта глава посвящена общей характеристике химического поведения и методов получения кетоз, главным образом на примере простейших представителэй кетогексоз и кето-пентоз. [c.239]

    Распространение в природе. Аминосахара широко распространены в природе и играют исключительно важную роль в процессах жизнедеятельности. Они являются необходимыми структурными единицами муко-полисахаридов (см. гл. 20) и смешанных биополимеров (см. гл. 21). Наиболее часто встречается в природе Л-глюкозамин. Полимер глюкозамина хитин образует наружный скелет всех ракообразных и насекомых кроме того, глюкозамин входит в состав гиалуроновой кислоты, кератосульфата, групповых веществ крови, ганглиозидов и т. д. Наряду с Л-глюкозамином в состав различных мукополисахаридов входят также Л-галактозамин и значительно реже Л-талозамин полимер Л-галактозамина составляет основу хрящевой ткани. [c.269]

    Полисахариды могут состоять из одного или нескольких типов моносахаридов, и в зависимости от этого различают гомо- и гетерополисахариды. По-видимому, даже самые сложные полисахариды редко содержат больше пяти — шести различных моносахаридов. К самым распространенным из них относятся гексозы — глюкоза, галактоза, манноза, пентозы — арабиноза, ксилоза. Кетозы в полисахаридах встречаются значительно реже альдоз. Широко распространены 6-дезоксигексозы — рамноза, фукоза, 2-аминосахара — глюкозамин, галактозамин, а также уроновые кислоты и нейраминовая кислота. Кроме того, многие полисахариды содержат заместители неуглеводной природы — остатки серной или фосфорной кислот, органических кислот, обычно уксусной. Смешанные биополимеры кроме углеводной части содержат белковую или липидную компоненты. [c.477]

    Другой хемотип — сложные высокоразветвленные соединения. Центральная цепь этих соединений не обязательно полисахаридной природы. Она может быть полипептидной, рибитфосфатной или состоять из смешанных полимеров. Определяющее значение для биологической функции имеют концевые олигосахаридные цепи, в состав которых обычно не входят уроновые кислоты или сульфоэфиры. Носителем отрицательных зарядов являются лишь остатки сиаловых кислот. Примерами таких соединений могут служить групповые вещества крови, муцин подчелюстной железы, 0-антиген грамотрицательных бактерий, полисахарид капсулы пневмококков типа XIV, декстраны. [c.609]

    Т. е. для биополимеров, не имеющих регулярной структуры, необходимо установление общего плана построения молекул сюда относятся как сведения об архитектонике молекулы (число и относительное расположение разветвлений, природа и размеры внутренних и внешних цепей), так и данные о последовательности моносахаридов на каждом конкретном участке молекулы полимера. Нельзя не отметить, что задача установления общего плана построения полимерной молекулы при выяснении первичной структуры белков и нуклеиновых кислот (биополимеров с единственным типом межмономерной связи) не ставится и является характерной для полисахаридов, приобретая особое значение в случае смешанных углеводсодержащих биополимеров. В настоящее время для решения этой задачи применяют фрагментацию полисахаридной цепи на олигомеры посредством частичного расщепления гликозидных связей. Методы установления строения низших олигосахаридов, получаемых при такой фрагментации, в настоящее время разработаны достаточно хорошо и применимы к небольшим количествам вещества, но они весьма трудоемки. Поэтому требует внимания разработка прямых физико-химических методов идентификации и установления строения олигосахаридов. [c.633]


Смотреть страницы где упоминается термин Полисахариды смешанные: [c.512]    [c.50]    [c.353]    [c.29]    [c.525]    [c.484]    [c.313]    [c.205]   
Химия целлюлозы (1972) -- [ c.117 , c.359 , c.432 , c.434 , c.438 , c.440 , c.445 , c.448 , c.452 ]

Химия целлюлозы и ее спутников (1953) -- [ c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Гидролиз смешанного полисахарида, содержащего звенья альтрозы и глюкозы

Древесины смешанного полисахарида, содержащего звенья альтрозы и глюкоз

Полисахариды

Пути биосинтеза полисахаридов и углеводных цепей смешанных биополимеров

Пути распада полисахаридов и углеводных цепей смешанных биополимеров

Растворимость смешанных полисахаридов



© 2025 chem21.info Реклама на сайте