Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анодная защита и пассивация

    Электрохимическая защита состоит в том, что при смещении электродного потенциала металла коррозионные процессы тормозятся. При этом различают два вида электрохимической защиты анодную и катодную. При анодной защите потенциал смещается в положительную сторону. Защитный эффект обусловлен пассивацией, при которой высокие положительные потенциалы достигаются очень малой анодной плотностью тока. Эффективность анодной защиты зависит от свойств металла и электролита. Основной конструкционный материал, применяемый в нефтегазовой промышленности, это низкоуглеродистая малолегированная сталь, которая слабо пассивируется в таких электролитах, как дренажная (подтоварная) вода в резервуарах, почвенная (грунтовая) влага. Изменчивость характеристики грунтов (минерализация водной фазы, состав газов и строение твердой основы) не позволяет успешно применять анодную защиту в таких условиях. Особое значение в анодной защите имеют ионы галогенов, способствующие образованию питтингов. В силу того, что в грунтах (например, солончаки). и пластовых водах содержится большое количество хлоридов, анодная защита для подземного оборудования нефтегазовой промышленности не применяется. [c.73]


    Анодная поляризация электрода от внешнего источника тока до потенциалов, при которых наступает пассивация, применяется для защиты металлов от коррозии метод анодной защиты). Анодную защиту осуществляют также, соединяя металл с другим более благородным металлическим или окисным протектором, напыляя благородный металл на защищаемый или используя благородные металлы в качестве легирующих добавок (И. Д. Томашов). В результате образования гальванической пары защищаемый металл поляризуется анодно и переходит в пассивное состояние (рис. 193). При анодной защите необходимо не допускать перепассивации металла, наступающей при слишком сильных анодных поляризациях. [c.385]

    При электрохимической защите от коррозии резервуаров, сосудов—реакторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2.3.1.2 и рис. 2.12). [c.378]

    В разделе Внутренняя защита резервуаров и аппаратов химической промышленности кроме методов катодной защиты приводятся рекомендации и по применению анодной защиты при наличии материалов, подвергающихся пассивации в соответствующих средах. Наряду с анодной поляризацией наложением тока от внешнего источника для достижения пассивного состояния рассматривается и способ защиты с применением ингибиторов. [c.14]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]


    Идея метода кислородной пассивации сводится к следующему. Чтобы резко затормозить коррозию металла, необходимо обеспечить смещение его коррозионного потенциала до значений, которые положительнее потенциала пассивации. Это можно сделать либо пропуская через металл анодный ток (так называемая анодная защита), либо вводя в раствор окислитель в необходимой концентрации. При этом для практики принци- [c.46]

    Хромоникельмолибденовые и хромоникелевые стали были первым объектом исследований Эделеану [67], Н. Д. Томашова и Г. П. Черновой [68], которые показали возможность анодной защиты этих сталей в сернокислотных средах. Легирование Сг, N1, Мо, 51, Мп, МЬ, V, Т1 приводит к возрастанию склонности к пассивации и улучшению условий применения анодной защиты, поскольку уменьшается критическая плотность тока пассивации ( кр), расширяется область устойчивой пассивности. Влияние легирующих элементов на параметры анодной защиты широко изучено Н. Д. Томашовым и Г. П. Черновой [69]. Вместе с тем, применение анодной защиты, как это будет показано ниже, позволило заменить высоколегированные сплавы менее легированными, Нержавеющие стали могут быть [c.59]

    Расчет анодной защиты при помощи внешнего источника тока сводится к определению параметров источника постоянного тока для двух режимов его работы 1) при анодной пассивации защищаемой конструкции 2) при поддержании пассивного состояния конструкции. [c.365]

    В основе метода анодной защиты лежит пассивация поверхности металла при наложении анодного тока. Анодный ток вызывает анодную поляризацию, т.е. возрастание электродного потенциала, и должен быть таким, чтобы превысить потенциал пассивации. Однако, если электродный потенциал слишком увеличивается, то область пассивности может оказаться пройденной и тогда начинается питтиигообразование или так называемая транспассивная коррозия (перепассивация). На практике анодную защиту больше всего применяют для нержавеющей стали, т.е. сплава железа с хромом, который обладает ярко выраженными пассивационными свойствами. Ее применяют также для титана и в некоторых случаях для углеродистой стали. [c.71]

    В промышленном применении анодной защиты важную проблему представляет защита щелей. В узкой щели во время потенциостатической анодной поляризации возникает большой градиент потенциала, обусловленный высоким электролитическим сопротивлением участка. Вследствие этого градиента внутренняя часть щели остается активной и корродирует с большой скоростью, несмотря на то, что наружная поверхность удерживается в пассивном состоянии при стабильном потенциале пассивации [8, 9]. Экспериментальные исследования с различными щелями, а также теоретический анализ свидетельствуют о возможности пассивирования щелей в процессе анодной защиты и контроля степени пассивирования (сопротивления раствора, состояния поверхности и т. д.) по геометрии щели и электрохимическому поведению защищаемого металла. Критическая плотность анодного тока является наиболее важным параметром, так как показывает силу тока, необходимого для достижения пассивности во время анодной защиты [1, 2, 7, 9]. [c.32]

    Покрытие более благородным металлом (анодная защита) может оказаться целесообразным в тех случаях, когда окисление основного металла ведет к замедлению коррозии за счет пассивации, связанной с образованием на защищаемой поверхности малопроницаемых оксидных пленок, или прочной адсорбции кислорода. [c.337]

    При определенных условиях для защиты металла используют не катодную, а анодную поляризацию. Подобная анодная защита может обеспечить образование и сохранение на металле пассивной пленки в условиях, когда самопроизвольная пассивация не происходит (железо в концентрированной серной кислоте, нержавеющая сталь в неокислительных кислотах). [c.478]

    Сопоставление скорости растворения титана при стационарном потенциале со скоростью растворения при потенциалах в области устойчивой пассивности показывает, что анодная защита позволяет снизить скорость коррозии в 15—30 раз. Плотность анодного тока в данном случае не может служить количественной характеристикой коррозионного процесса, поскольку одновременно осуществляется процесс анодного окисления ионов Сг + до Сг +, скорость которого в 85 раз превышает скорость растворения титана в области устойчивой пассивности. При анодной защите потери ионов Сг + невелики и составляют не более 1,5% от вводимого количества Сг +. Хотя в данном случае для поддержания потенциала пассивации требуются более высокие плотности анодного тока (приблизительно 1 А/м ), однако затраты на электроэнергию при анодной защите исследуемой системы невелики и не превышают 0,35 руб./(год-м ). [c.65]


    Действенность этого способа защиты подтверждена целым рядом исследований на коррозионностойких сталях [42—44], титане [45—47], свинце [48, 49] и тантале [50]. Эффект предотвращения коррозии при этом обеспечивается не только анодной защитой, но и дополнительно покрывающим действием осаждающихся благородных металлов. В результате этого плотность тока пассивации на активных участках уменьшается и тем самым улучшается пассивируемость [51]. [c.399]

    Анодную защиту применяют только для оборудования из сплавов, которые склонны к пассивации в данном технологическом растворе. Коррозия этих сплавов в пассивном состоянии протекает гораздо медленнее. Анодную поляризацию защищаемого металла осуществляют с помощью источника постоянного тока, потенциостата, который автоматически регулирует потенциал защищаемого металла.  [c.40]

    Принцип действия анодной защиты основан на пассивации металлов при их анодной поляризации током сторонних источников. Расчет анодной защиты требует учета нелинейности анодных поляризационных кривых, общий вид которых представлен на рис. 4.15, где D - участок, соответствующий области пассивного состояния металла. [c.240]

    Из практики анодной защиты минимальная протяженность области устойчивой пассивации Аф, необходимая для нормальной работы системы анодной защиты, должна составлять не менее 50 мВ. [c.18]

    Пассивации металлов сопутствует сдвиг их потенциалов в положительную сторону. Пассивность железа, стали и других металлов можно вызвать электрохимическим путем с помощью анодной поляризации (например, в разбавленной серной кислоте при наложении постоянного тока определенной плотности). Указанное явление положено в основу анодной защиты. [c.48]

    Если катод находится в среде, в которой его самопроизвольная пассивация при периодической поляризации либо затруднена, либо невозможна вследствие больших значений и , то потенциал катода смещается в область активного растворения. При наличии эффективной зоны катодной защиты возможно смещение и поддержание потенциала в этой области. Для этого необходимо изменить вид поляризации — периодическую заменить непрерывной. Это приводит к удорожанию средств регулирования потенциала и уменьшению надежности системы анодной защиты. Возможно принудительное возвращение потенциала катода из области активного растворения в устойчивое пассивное состояние, т. е. анодная защита катода при периодической поляризации. Для этого необходимо во время пауз замыкать катод на анод, и катод будет иметь такой же потенциал, как на аноде, т. е. соответствовать области устойчивого пассивного состояния. [c.90]

    Скорость коррозии в подобной среде при 25, 35 и 40°С составляет соответственно 2,3, 4 и 5 г/(м -ч). Как видно из рис. 3,1, с ростом температуры (от 20 до 40 °С) плотность критического тока пассивации 1кр увеличивается почти в 5 раз, границы области устойчивого пассивного состояния (от — 0,45 до 0,85 В) не изменяются, плотность тока в пассивной области возрастает на порядок. Стационарные плотности тока в пассивной области близки к 4 А/см2, что соответствует скорости коррозии 0,0016 г/(м -ч). Таким образом, анодная защита позволяет снизить скорость коррозии более, чем в 3000 раз. [c.39]

    ВОЗМОЖНОСТЬ анодной защиты ее в таких растворах [24]. Как показали исследования, в растворах нитрата аммония (pH 5) увеличение концентрации NH4NOз от 1 до 6 н. почти не влияет на область активного растворения и величины фкр и фпас. Значения скорости растворения Ст.З в активной области при постоянном потенциале, вычисленные по убыли массы образцов, результатам анализа раствора и количеству электричества, практически совпадают (табл. 3.2). В растворах сульфата аммония скорость растворения стали значительно выше, чем в растворах нитрата аммония при постоянном pH. При добавке к такому раствору аммиачной селитры скорость растворения стали в активном состоянии, критическая плотность тока и потенциал пассивации снижаются. При достаточной концентрации аммиачной селитры практически полностью подавляется влияние сульфата аммония на л и г кр. [c.42]

    При понижении потенциала и достижении поверхностью металла значения (р и соответственно плотности тока начинается пассивация металла. При потенциале (р металл полностью пассивируется и скорость его растворения соответствует плотности тока Область оптимальной запассивированно-сти металла находится между потенциалом иассивации (р и потенциалом пере-заш.и 1 ы (р анодная защита заключается в поддерживании потенциала металла в этой области. Смещение потенциала к значениям, отрицательнее (р, способствует активированию металла и соответствующему увеличению анодного тока и коррозии металла. Смещение потенциала положительнее значения (р вызывает перезащиту металла, что приводит к увеличению энергетических затрат и к усилению коррозии в результате перепассивации, отслаивания защитной плёнки, питтингообразования или электрического пробоя плёнки. [c.197]

    В. М. Новаковским, Я. М. Колотыркиным с сотр. разработан новый режим анодной защиты [26], который позволяет проводить более эффективное торможение коррозии, чем при обычной анодной защите. Сущность метода заключается в чередовании двух режимов высокопотенциального (при потенциалах, близких к верхней границе пассивной области) и низкопотенциального (на 2—3 порядка более длительного при потенциалах нижней границы пассивной области). Преимущества последнего режима особенно ощутимы при защите металлов с большой скоростью растворения в пассивном состоянии и значительной протяженностью области пассивации. [c.107]

    На опытной установке был проверен другой комплекс аппаратуры анодной защиты [36]. Электрическая часть состояла из двух независимых систем пассивации емкостей и автоматического регулирования. При изготовлении таких систем возникали трудности, связанные с согласованием входных и выходных параметров приборов, что требовало дополнительной переделки или перестройки отдельных блоков приборов. Поэтому было сконструировано потенциостатическое устройство [29[, рассчитанное на силу тока до 10 А и позволяющее измерять потенциалы в пределах —3,5--[-4,0 В с входным сопротивлением не [c.110]

    Система пассивации и контроля анодной защиты. [c.117]

    При прочих равных условиях это может значительно расширить радиус действия анодной защиты. Если расчет покажет, что не вся труба будет заиассивирована, то можно принять необходимые меры для пассивации активной части трубы путем постановки добавочных катодов. Показано, что для стали 18% Сг-— 8% N1, активно растворяющейся в 30%-ной до наложения анодной защиты, пассивация трубы при анодной поляризации возможна на участках сравнительно небольшо длины. Если труба каким-либо методом переведена в пассивное состояние, т. е. в случае, когда пеобхо- [c.119]

    Катодная или анодная (при пассивации) защита от коррозии может быть достигнута не только путем создания сплошного защитного металлического слоя, но и в случае простого присое- [c.337]

    Анодная поляризация электрода от внешнего источника тока до потенциалов, при которых наступает пассивация, применяется для ващиты металлов от коррозии (метод анодной защиты). Анодную защиту осуществляют также, соединяя металл с другим более благород- [c.370]

    Во всех металлических материалах при циклическом нагружеНИи даже с напряжениями, гораздо меньшими, чем временное сопротивление, образуются трещины. Этот процесс называется усталостью материала. Между амплитудой напряжения в цикле и числом циклов нагрузок, вызывающих разрушение, имеется зависимость, описываемая усталостной кривой —так называемой кривой Вёлера. На рис. 2.19 показана такая кривая для углеродистой стали с пределом циклической прочности при нагружении на знакопеременный изгиб с напряжением 210 МПа. При амплитуде, равной пределу циклической прочности, кривая Вёлера идет горизонтально, т. е. меньшие амплитуды уже не могут вызвать разрушения при любом большом числе циклов нагружения. При коррозионном воздействии предела циклической прочности нет. Кривая амплитуда — число циклов до разрушения при стационарном потенциале круто опускается вниз. Пассивация анодной защитой с повышением потенциала до = = 4-0,85 В приводит лишь к незначительному повышению числа циклов нагружений до разрушения. Напротив, катодная защита дает заметный эффект. При /д =—0,95 В достигаются такие же значения числа циклов, как и при испытании на воздухе [70]. [c.74]

    Наиболее надежными и эффективными системами анодной защиты являются комбинированные системы, содержащие регулятор напрягкения и протекторы. При этом появляется возможность регулировать ток в широких пределах и ослабить чувствительность к перебоям в энергоснабжении. Регулятор напряжения обеспечивает пассивацию защищаемого объекта, а поддержание пассивности обеспечивается протекторами. Материалами протекторов в серной кислоте и растворах аммиачной селитры могут быть графитовые материалы. [c.145]

    Основными факторами, хараЕсгеризующими зависимость скорости растворения металла от потенциала (рис. 1.4.48) и существенно влияющими на эксплуатационные условия и эффективность анодной защиты, являются следующие параметры критическая плотность пассивного тока критический интервал пассивации интервал потенциалов, в котором сохраняется пассивное состояние, и ток растворения в пассивном состоянии. [c.133]

    Существенным ограничением применения анодной защиты является вероятность возникновения локальных видов коррозии в области пассивного состояния металла. Для предотвращения этого явления на основании предварительных исследований рекомендуют такое значение защитного потенциала, при котором локальные виды коррозии не возникают или в раствор вводят ингибирующие добавки. Например, анодная защита стали 12Х18Н10Т в растворах хлоридов в присутствие ионов N03 предотвращает образование питтингов и снижает скорость растворения стали в 2000 раз. В ряде случаев вследствие повышенной опасности возникновения локальных коррозионных процессов применение анодной защиты неэффективно. Резкий рост критического тока пассивации металлов с увеличением температуры агрессивных сред ограничивает применение анодной защиты в условиях повышенных температур. [c.295]

    Кажущимся ограничением применения анодной защиты может быть высокий критический ток пассивации ( кр). Однако, как будет показано дальше, возможна предварительная пассивация металла (даже многотоннажных хранилиш). [c.16]

    В 1965 г. фирма ontinental Oil внедрила анодную защиту железнодорожных цистерн, транспортирующих аммиакаты [13, 14]. Представитель этой фирмы Риггс [15] впервые отметил влияние ржавой стали на параметры анодной защиты в растворах NH3—NH4NO3—Н2О. Сравнивая анодные потенциостатические кривые, полученные на образцах, покрытых ржавчиной и с чистой поверхностью, он установил, что на чистой поверхности пассивация наступает значительно раньше, чем на поверхности, покрытой ржавчиной. [c.38]

    Добавка 0,5—1% аммиака в раствор, содержащий 30% МН4МОз4-15% (ЫН4)2504, приводит к резкому снижению 1кр. Однако дальнейшее увеличение концентрации аммиака сопровождается повышением критической плотности тока пассивацпи и скорости активного растворения. Зависимость г кр от pH в таких смешанных растворах имеет экстремальный характер. Увеличение /л и /кр связано как с повышением pH раствора, так и с увеличением общей концентрации аммиака. Добавки аммиака (0,5—1%) приводят не только к снижению плотности тока первичной пассивации, но и к расширению области устойчивого пассивного состояния. Таким образом, аммонизация растворов сульфата и нитрата аммония не только позволяет обогащать удобрения азотом, но и облегчает режим анодной защиты. В ряде случаев аммонизация нитрат-сульфатных растворов дает возможность перевести Ст. 3 в пассивное состояние. [c.42]

    Используя анодную пассивацию углеродистой стали, удалось устранить коррозионное растрескивание сосудов с КОН в производстве водорода электролитическим способом. Источником тока служил сам электролизер. Поскольку стабильность пассивного состояния довольно высокая, можно после пассивации извлечь катод из защищаемых сосудов [101]. Интересными являются лабораторные исследования анодной защиты испарителей из чугуна (2—3% Ni) в 30%-ной КОН при 25— 70°С, в 70%-ной КОН при температуре кипения и в расплаве при 310°С [102], а также олова при разных концентрациях NaOH и температурах 25, 40 и 60°С [103]. [c.69]

    Е. С. Лецких и А. Т. Коморникова исследовали возможность анодной защиты стали 12Х18Н10Т в концентрированном растворе квасцов, содержащих сульфаты хрома и аммония (90 г/л Сг и 31 г/л NH4 при отношении 1 1) и небольшое количество свободной кислоты (pH 1) [104] при температуре выше 70°С эти растворы сильно агрессивны. Анодная пассивация обеспечивает оптимальную защиту в области потенциалов 0,05— 0,95 В, защитная плотность тока находится в интервале 7Х X 10- — ЫО- А/м2. Скорость коррозии стали 12Х18Н10Т снижается до 6-10- г/(м -ч), т. е. более чем в 1200 раз. [c.70]

    Аппаратура анодной защиты кроме основной функции (поддерживание потенциала) часто выполняет и другие функции, что позволяет обеспечить надежность и качество защиты. В этом случае, кроме регуляторов потенциала, предусматривают дополнительные устройства. Фороулнс [40] предлагает совместить регулятор потенциала с источником постоянного тока. При пассивации или нарушении технологического процесса, когда тока от регулятора потенциала недостаточно, подключается источник постоянного тока. При нормальном течении процесса анодной защиты источник постоянного тока отключается, и работает только потенциостат. [c.112]


Смотреть страницы где упоминается термин Анодная защита и пассивация: [c.374]    [c.377]    [c.71]    [c.67]    [c.68]    [c.114]    [c.145]    [c.88]   
Смотреть главы в:

Электрохимическая коррозия -> Анодная защита и пассивация




ПОИСК





Смотрите так же термины и статьи:

Пассивация

Ток анодный



© 2024 chem21.info Реклама на сайте